




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省合肥市名校2024屆中考數(shù)學押題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.252.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點A,B在圍成的正方體中的距離是()A.0 B.1 C. D.3.如圖,在△ABC中,DE∥BC,若,則等于()A. B. C. D.4.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元5.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個月多賣10%,設上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3306.在下列條件中,能夠判定一個四邊形是平行四邊形的是()A.一組對邊平行,另一組對邊相等B.一組對邊相等,一組對角相等C.一組對邊平行,一條對角線平分另一條對角線D.一組對邊相等,一條對角線平分另一條對角線7.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.48.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.219.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.10.我國古代數(shù)學家劉徽創(chuàng)立的“割圓術”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術”,將π的值精確到小數(shù)點后第七位,這一結果領先世界一千多年,“割圓術”的第一步是計算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.12.若向北走5km記作﹣5km,則+10km的含義是_____.13.如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點P旋轉得到△PDE(點C、Q分別與點D、E對應),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.14.化簡:÷=_____.15.如圖,在平行四邊形ABCD中,過對角線AC與BD的交點O作AC的垂線交于點E,連接CE,若AB=4,BC=6,則△CDE的周長是______.16.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O直徑,C為⊙O上一點,點D是的中點,DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關系,并證明你的結論;(2)若OF=4,求AC的長度.18.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(A在B的左側),其中點B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設點P是拋物線上且在x軸上方的任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.19.(8分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由20.(8分)如圖,直線AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度數(shù).21.(8分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?22.(10分)已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,(1)求證MF=NF(2)當∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數(shù)量關系.(不必證明)23.(12分)已知拋物線,與軸交于兩點,與軸交于點,且拋物線的對稱軸為直線.(1)拋物線的表達式;(2)若拋物線與拋物線關于直線對稱,拋物線與軸交于點兩點(點在點左側),要使,求所有滿足條件的拋物線的表達式.24.如圖,以O為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關系,并說明理由;(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運動一周,當S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據(jù)等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.2、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質;熟練掌握正方形的性質和勾股定理,并能進行推理計算是解決問題的關鍵.由正方形的性質和勾股定理求出AB的長,即可得出結果.解:連接AB,如圖所示:根據(jù)題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點:1.勾股定理;2.展開圖折疊成幾何體.3、C【解析】試題解析::∵DE∥BC,∴,故選C.考點:平行線分線段成比例.4、C【解析】
根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.5、D【解析】解:設上個月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.6、C【解析】A、錯誤.這個四邊形有可能是等腰梯形.B、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.C、正確.可以利用三角形全等證明平行的一組對邊相等.故是平行四邊形.D、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.故選C.7、D【解析】
先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關鍵是掌握整體代入法.8、A【解析】
根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.9、A【解析】
根據(jù)輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據(jù)兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質是解題關鍵.10、C【解析】
根據(jù)題意畫出圖形,結合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點睛】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應用問題,關鍵是根據(jù)正三角形的面積,正n邊形的性質解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質,最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.12、向南走10km【解析】
分析:與北相反的方向是南,由題意,負數(shù)表示向北走,則正數(shù)就表示向南走,據(jù)此得出結論.詳解:∵向北走5km記作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.點睛:本題考查對相反意義量的認識:在一對具有相反意義的量中,先規(guī)定一個為正數(shù),則另一個就要用負數(shù)表示.13、1【解析】
連接AD,根據(jù)PQ∥AB可知∠ADQ=∠DAB,再由點D在∠BAC的平分線上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根據(jù)勾股定理可知,AQ=11-4x,故可得出x的值,進而得出結論.【詳解】連接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵點D在∠BAC的平分線上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,設PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,
∴CP=3x=1;故答案為:1.【點睛】本題考查平行線的性質、旋轉變換、等腰三角形的判定、勾股定理、相似三角形的判定和性質等知識,解題的關鍵是學會利用參數(shù)解決問題,屬于中考??碱}型.14、m【解析】解:原式=?=m.故答案為m.15、1【解析】
由平行四邊形ABCD的對角線相交于點O,OE⊥AC,根據(jù)線段垂直平分線的性質,可得AE=CE,又由平行四邊形ABCD的AB+BC=AD+CD=1,繼而可得結論.【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周長為:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案為1.【點睛】本題考查了平行四邊形的性質,線段的垂直平分線的性質定理等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考??碱}型.16、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點:等腰直角三角形;平行線的性質.三、解答題(共8題,共72分)17、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點D是的中點,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據(jù)△ODF與△ABC相似,求得AC的長.AC=818、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】
(1)拋物線的對稱軸x=1、B(3,0)、A在B的左側,根據(jù)二次函數(shù)圖象的性質可知A(-1,0);根據(jù)拋物線y=ax2+bx+c過點C(0,3),可知c的值.結合A、B兩點的坐標,利用待定系數(shù)法求出a、b的值,可得拋物線L的表達式;(2)由C、B兩點的坐標,利用待定系數(shù)法可得CB的直線方程.對拋物線配方,還可進一步確定拋物線的頂點坐標;通過分析h為何值時拋物線頂點落在BC上、落在OB上,就能得到拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界)時h的取值范圍.(3)設P(m,﹣m2+2m+3),過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,通過證明△BNP≌△PMQ求解即可.【詳解】(1)把點B(3,0),點C(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即拋物線的對稱軸是:x=1,設原拋物線的頂點為D,∵點B(3,0),點C(0,3).易得BC的解析式為:y=﹣x+3,當x=1時,y=2,如圖1,當拋物線的頂點D(1,2),此時點D在線段BC上,拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,當拋物線的頂點D(1,0),此時點D在x軸上,拋物線的解析式為:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范圍是2≤h≤4;(3)設P(m,﹣m2+2m+3),如圖2,△PQB是等腰直角三角形,且PQ=PB,過P作MN∥x軸,交直線x=﹣3于M,過B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(圖3)或m2=1,∴P(1,4)或(0,3).【點睛】本題主要考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式、二次函數(shù)的圖象與性質、二次函數(shù)與一元二次方程的聯(lián)系、全等三角形的判定與性質等知識點.解(1)的關鍵是掌握待定系數(shù)法,解(2)的關鍵是分頂點落在BC上和落在OB上求出h的值,解(3)的關鍵是證明△BNP≌△PMQ.19、(1);6;(2)有最小值;(3),.【解析】
(1)先求出點B,C坐標,利用待定系數(shù)法求出拋物線解析式,進而求出點A坐標,即可求出半圓的直徑,再構造直角三角形求出點D的坐標即可求出BD;
(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結論得證.
(3)求出線段AC,BC進而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,
∴y=-3,
∴B(0,-3),
令y=0,
∴x-3=0,
∴x=4,
∴C(4,0),
∵拋物線y=x2+bx+c過B,C兩點,∴∴∴拋物線的解析式為y=;令y=0,
∴=0,∴x=4或x=-1,
∴A(-1,0),
∴AC=5,
如圖2,記半圓的圓心為O',連接O'D,
∴O'A=O'D=O'C=AC=,
∴OO'=OC-O'C=4-=,
在Rt△O'OD中,OD==2,∴D(0,2),
∴BD=2-(-3)=5;(2)如圖3,
∵A(-1,0),C(4,0),
∴AC=5,
過點E作EG∥BC交x軸于G,
∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設高為h,
∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點時,CG最大,
∵直線BC的解析式為y=x-3,
設直線EG的解析式為y=x+m①,
∵拋物線的解析式為y=x2-x-3②,
聯(lián)立①②化簡得,3x2-12x-12-4m=0,
∴△=144+4×3×(12+4m)=0,
∴m=-6,
∴直線EG的解析式為y=x-6,
令y=0,
∴x-6=0,
∴x=8,
∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,
∴半圓上除點A,C外任意一點Q,都有∠AQC=90°,
∴點P只能在拋物線部分上,
∵B(0,-3),C(4,0),
∴BC=5,
∵AC=5,
∴AC=BC,
∴∠BAC=∠ABC,
當∠APC=∠CAB時,點P和點B重合,即:P(0,-3),
由拋物線的對稱性知,另一個點P的坐標為(3,-3),
即:使∠APC=∠CAB,點P坐標為(0,-3)或(3,-3).【點睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質,勾股定理,相似三角形的判定和性質,拋物線的對稱性,等腰三角形的判定和性質,判斷出CG最大時,兩三角形面積之比最小是解本題的關鍵.20、50°.【解析】
試題分析:由平行線的性質得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到結論.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【點評】本題考查了平行線的性質和角平分線定義等知識點,解此題的關鍵是求出∠ABD的度數(shù),題目較好,難度不大.21、(1);(2)淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.【解析】試題分析:(1)根據(jù)等可能事件的概率的定義,分別確定總的可能性和是勾股數(shù)的情況的個數(shù);(2)用列表法列舉出所有的情況和兩張卡片上的數(shù)都是勾股數(shù)的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現(xiàn)4種等可能結果,其中抽到的卡片上的數(shù)是勾股數(shù)的結果有3種,所以嘉嘉抽取一張卡片上的數(shù)是勾股數(shù)的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現(xiàn)的結果有12種,其中抽到的兩張卡片上的數(shù)都是勾股數(shù)的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.22、(1)見解析;(2)MF=NF.【解析】
(1)連接AE,BD,先證明△ACE和△BCD全等,然后得到AE=BD,然后再通過三角形中位線證明即可.(2)根據(jù)圖(2)(3)進行合理猜想即可.【詳解】解:(1)連接AE,BD在△ACE和△BCD中∴△ACE≌△BCD∴AE=BD又∵點M,N,F分別為AB,ED,AD的中點∴MF=BD,NF=AE∴MF=NF(2)MF=NF.方法同上.【點睛】本題考查了三角形全等的判定和性質以及三角形中位線的知識,做出輔助線和合理猜想是解答本題的關鍵.23、(1);(2).【解析】
(1)根據(jù)待定系數(shù)法即可求解;(2)根據(jù)題意知,根據(jù)三角形面積公式列方程即可求解.【詳解】(1)根據(jù)題意得:,解得:,拋物線的表達式為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)開戶銀行合同范本
- 個體老板合同范本
- vr公司合同范本
- 2025年煙臺駕駛資格證模擬考試
- 化妝店轉租上海合同范本
- 獸醫(yī)診所轉讓合同范本
- 副業(yè)兼職合同范本
- 二手車行業(yè)勞動合同范本
- 軍旅衣服租賃合同范本
- 農(nóng)村房屋場地出租合同范本
- 阿米巴經(jīng)營-稻盛和夫經(jīng)營哲學的實學應用
- 八段錦口令標準版合集
- JCT414-2017 硅藻土的標準
- 肌肉注射評分標準
- 鋼結構主要技術標準和要求
- 新版藥品管理法培訓完整版本課件
- 北師大版高中英語選擇性必修四全冊課文及翻譯(中英文Word)
- 臘八粥 第一課時自學導學單
- 心靈手巧織美好-精美掛件我會編 (教案)-二年級下冊勞動浙教版
- IPO項目律師盡職調(diào)查查驗計劃表模版
- 中美關系新時代52張課件
評論
0/150
提交評論