版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆吉林省吉林市第五十五中學高三下學期第五次調研考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的大致圖象是()A. B.C. D.2.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.83.已知向量,,若,則()A. B. C. D.4.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.35.根據(jù)黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.6.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.607.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個8.已知定義在R上的偶函數(shù)滿足,當時,,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.69.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現(xiàn)象.為考察共享經濟對企業(yè)經濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.10.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間11.函數(shù)f(x)=lnA. B. C. D.12.設全集,集合,.則集合等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結論:①甲校學生成績的優(yōu)秀率大于乙校學生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系不確定.其中,所有正確結論的序號是____________.14.拋物線的焦點到準線的距離為.15.已知雙曲線()的左右焦點分別為,為坐標原點,點為雙曲線右支上一點,若,,則雙曲線的離心率的取值范圍為_____.16.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.18.(12分)已知函數(shù).若在定義域內存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.19.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數(shù)方程;(2)求面積的最大值.20.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;(3)若單位時間內煤氣輸出量與旋轉的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,21.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數(shù)列,求a的值。22.(10分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎題.2、C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎題.3、A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.4、C【解析】
對于①中,根據(jù)指數(shù)冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數(shù),利用導數(shù)得到函數(shù)為單調遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質,可得成立,所以是正確的;對于②中,設函數(shù),則,所以函數(shù)為單調遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設函數(shù),則,當時,,函數(shù)單調遞增,當時,,函數(shù)單調遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數(shù)在函數(shù)中的綜合應用,其中解答中根據(jù)題意,合理構造新函數(shù),利用導數(shù)求得函數(shù)的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.5、A【解析】
每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.6、D【解析】
先設A點的坐標為,根據(jù)對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據(jù)對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數(shù)形結合思想,以及化歸與轉化思想的應用.7、B【解析】
圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、B【解析】
由函數(shù)的性質可得:的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,由函數(shù)圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數(shù)滿足,可得的圖像關于直線對稱且關于軸對稱,函數(shù)()的圖像也關于對稱,函數(shù)的圖像與函數(shù)()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數(shù)的性質,考查了數(shù)形結合的思想,掌握函數(shù)的性質是解題的關鍵,屬于中檔題.9、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經濟活躍度的差異最大,它最能體現(xiàn)共享經濟對該部門的發(fā)展有顯著效果,故選D.10、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當且時的導數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)椋蓤D像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調性求解對應自變量范圍,導數(shù)法研究函數(shù)增減性,數(shù)形結合思想,轉化與化歸思想,屬于難題11、C【解析】因為fx=lnx2-4x+4x-23=12、A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】
根據(jù)局部頻率和整體頻率的關系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關系,意在考查學生的理解能力和應用能力.14、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質.15、【解析】
法一:根據(jù)直角三角形的性質和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關于的式子,再令,則,令對函數(shù)求導研究函數(shù)在上單調性,可求得離心率的范圍.法二:令,,,,,根據(jù)直角三角形的性質和勾股定理得,將離心率表示成關于角的三角函數(shù),根據(jù)三角函數(shù)的恒等變化轉化為關于的函數(shù),可求得離心率的范圍.【詳解】法一:,,,,,,設,則,令,所以時,,在上單調遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點睛】本題考查求雙曲線的離心率的范圍的問題,關鍵在于將已知條件轉化為與雙曲線的有關,從而將離心率表示關于某個量的函數(shù),屬于中檔題.16、【解析】
設,設出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設,直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數(shù)方程的運用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先證得,設與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)由題意,,設與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點睛】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內有解,即方程在區(qū)間上有解,則,設,利用導函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設,則可變形為方程在區(qū)間內有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內有局部對稱點所以在內有解,即方程在區(qū)間上有解,所以,設,則,所以令,則,當時,,故函數(shù)在區(qū)間上單調遞減,當時,,故函數(shù)在區(qū)間上單調遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內有解,需滿足條件:,即,得【點睛】本題考查函數(shù)的局部對稱點的理解,利用導函數(shù)研究函數(shù)的最值問題,考查轉化思想與運算能力.19、(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標方程,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程,得出和關于的表達式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標方程得,即,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程得,,的面積為,當時,的面積取到最大值.【點睛】本題考查參數(shù)方程、極坐標方程與普通方程的互化,考查了伸縮變換,同時也考查了利用極坐標方程求解三角形面積的最值問題,要熟悉極坐標方程所適用的基本類型,考查分析問題和解決問題的能力,屬于中等題.20、(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】
(1)根據(jù)散點圖的特點,可得更適合;(2)先建立關于的回歸方程,再得出關于的回歸方程;(3)寫出函數(shù)關系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)魚技巧與知識培訓課件
- 2025年度海洋動物運輸與供應鏈管理合同3篇
- 綠森鋼化中空玻璃遷擴建項目可行性研究報告模板-立項拿地
- 全國清華版信息技術小學四年級下冊新授課 第4課 獨特景觀-在幻燈片中插入文本框 說課稿
- Unit7 Grammar Focus 說課稿 2024-2025學年人教版英語七年級上冊
- 貴州省安順市(2024年-2025年小學六年級語文)統(tǒng)編版競賽題(下學期)試卷及答案
- 安徽省合肥市新站區(qū)2024-2025學年九年級上學期期末化學試卷(含答案)
- 二零二五年度周轉材料租賃與施工現(xiàn)場安全生產合同3篇
- 陜西省商洛市(2024年-2025年小學六年級語文)部編版小升初真題(上學期)試卷及答案
- 貴州黔南經濟學院《手繪表現(xiàn)技法景觀》2023-2024學年第一學期期末試卷
- 事業(yè)單位公開招聘工作人員政審表
- GB/T 35199-2017土方機械輪胎式裝載機技術條件
- GB/T 28591-2012風力等級
- 思博安根測儀熱凝牙膠尖-說明書
- 信息學奧賽-計算機基礎知識(完整版)資料
- 數(shù)字信號處理(課件)
- 出院小結模板
- HITACHI (日立)存儲操作說明書
- (新版教材)蘇教版二年級下冊科學全冊教案(教學設計)
- 61850基礎技術介紹0001
- 電鏡基本知識培訓
評論
0/150
提交評論