




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省齊齊哈爾市拜泉縣重點達標名校2023-2024學年中考數(shù)學猜題卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,AB=10,BC=8,DE=4.5,則△DEF的周長是()A.9.5 B.13.5 C.14.5 D.172.若分式有意義,則a的取值范圍是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切實數(shù)3.如圖,在平行四邊形ABCD中,AE:EB=1:2,E為AB上一點,AC與DE相交于點F,S△AEF=3,則S△FCD為()A.6 B.9 C.12 D.274.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°5.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm6.如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④7.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④8.某射擊選手10次射擊成績統(tǒng)計結果如下表,這10次成績的眾數(shù)、中位數(shù)分別是()成績(環(huán))78910次數(shù)1432A.8、8 B.8、8.5 C.8、9 D.8、109.已知等邊三角形的內切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:310.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×107二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:y3﹣16y=_____.12.計算:a6÷a3=_________.13.若實數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)14.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等.若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A、B分別在l3、l2上,則tanα的值是______.15.計算:_______________.16.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.三、解答題(共8題,共72分)17.(8分)如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.18.(8分)某中學采用隨機的方式對學生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據有關信息解答:(1)接受測評的學生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應扇形的圓心角為________°,并補全條形統(tǒng)計圖;(2)若該校共有學生1200人,請估計該校對安全知識達到“良”程度的人數(shù);(3)測評成績前五名的學生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.19.(8分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.20.(8分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積21.(8分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.22.(10分)近幾年“霧霾”成為全社會關注的話題某校環(huán)保志愿者小組對該市2018年空氣質量進行調查,從全年365天中隨機抽查了50天的空氣質量指數(shù)(AQI),得到以下數(shù)據:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)請你完成如下的統(tǒng)計表;AQI0~5051~100101~150151~200201~250300以上質量等級A(優(yōu))B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數(shù)(2)請你根據題中所給信息繪制該市2018年空氣質量等級條形統(tǒng)計圖;(3)請你估計該市全年空氣質量等級為“重度污染”和“嚴重污染”的天數(shù).23.(12分)在某小學“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結論的概率是多少?(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結論,則小選手可入圍進入復賽,問琪琪進入復賽的概率是多少?24.如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.2、A【解析】分析:根據分母不為零,可得答案詳解:由題意,得,解得故選A.點睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關鍵.3、D【解析】
先根據AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性質即可得出結論.【詳解】解:∵四邊形ABCD是平行四邊形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=1.故選D.【點睛】本題考查的是相似三角形的判定與性質,熟知相似三角形面積的比等于相似比的平方是解答此題的關鍵.4、B【解析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B5、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.6、B【解析】
解:根據作圖過程,利用線段垂直平分線的性質對各選項進行判斷:根據作圖過程可知:PB=CP,∵D為BC的中點,∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯誤;④ED=AB正確.∴正確的有①②④.故選B.考點:線段垂直平分線的性質.7、D【解析】試題分析:首先要理解清楚題意,知道總的客車數(shù)量及總的人數(shù)不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數(shù)列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數(shù)列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.8、B【解析】
根據眾數(shù)和中位數(shù)的概念求解.【詳解】由表可知,8環(huán)出現(xiàn)次數(shù)最多,有4次,所以眾數(shù)為8環(huán);這10個數(shù)據的中位數(shù)為第5、6個數(shù)據的平均數(shù),即中位數(shù)為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做眾數(shù);將一組數(shù)據按照從小到大(或從大到小)的順序排列,如果數(shù)據的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據的中位數(shù);如果這組數(shù)據的個數(shù)是偶數(shù),則中間兩個數(shù)據的平均數(shù)就是這組數(shù)據的中位數(shù).9、D【解析】試題分析:圖中內切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.10、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將4670000用科學記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學記數(shù)法—表示較大的數(shù),解題的關鍵是掌握科學記數(shù)法的概念進行解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、y(y+4)(y﹣4)【解析】試題解析:原式故答案為點睛:提取公因式法和公式法相結合因式分解.12、a1【解析】
根據同底數(shù)冪相除,底數(shù)不變指數(shù)相減計算即可【詳解】a6÷a1=a6﹣1=a1.故答案是a1【點睛】同底數(shù)冪的除法運算性質13、>【解析】
根據數(shù)軸可以確定m、n的大小關系,根據加法以及減法的法則確定m+n以及m?n的符號,可得結果.【詳解】解:根據題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點睛】本題考查了整式的加減和數(shù)軸,熟練掌握運算法則是解題的關鍵.14、【解析】如圖,分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D.∵△ABC為等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.設平行線間距離為d=l,則CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.點睛:分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D,可根據ASA證明△ACE≌△CBF,設平行線間距離為d=1,進而求出AD、BD的值;本題考查了全等三角形的判定和銳角三角函數(shù),解題的關鍵是合理添加輔助線構造全等三角形;15、【解析】
先把化簡為2,再合并同類二次根式即可得解.【詳解】2-=.故答案為.【點睛】本題考查了二次根式的運算,正確對二次根式進行化簡是關鍵.16、【解析】由題意易得四邊形ABFE是正方形,設AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質,相似多邊形的性質等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)【解析】分析:(1)如下圖,連接OD,由OA=OD可得∠DAO=∠ADO,結合∠CAD=∠DAB,可得∠CAD=∠ADO,從而可得OD∥AC,由此可得∠C+∠CDO=180°,結合∠C=90°可得∠CDO=90°即可證得CD是⊙O的切線;(2)如下圖,連接BD,由AB是⊙O的直徑可得∠ADB=90°=∠C,結合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的長了.詳解:(1)如下圖,連接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切線.(2)如下圖,連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.點睛:這是一道考查“圓和直線的位置關系與相似三角形的判定和性質”的幾何綜合題,作出如圖所示的輔助線,熟悉“圓的切線的判定方法”和“相似三角形的判定和性質”是正確解答本題的關鍵.18、(1)80,135°,條形統(tǒng)計圖見解析;(2)825人;(3)圖表見解析,(抽到1男1女).【解析】試題分析:(1)、根據“中”的人數(shù)和百分比得出總人數(shù),然后求出優(yōu)所占的百分比,得出圓心角的度數(shù);(2)、根據題意得出“良”和“優(yōu)”兩種所占的百分比,從而得出全校的總數(shù);(3)、根據題意利用列表法或者樹狀圖法畫出所有可能出現(xiàn)的情況,然后根據概率的計算法則求出概率.試題解析:(1)80,135°;條形統(tǒng)計圖如圖所示(2)該校對安全知識達到“良”程度的人數(shù):(人)(3)解法一:列表如下:所有等可能的結果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).女1女2女3男1男2女1---女2女1女3女1男1女1男2女1女2女1女2---女3女2男1女2男2女2女3女1女3女2女3---男1女3男2女3男1女1男1女2男1女3男1---男2男1男2女1男2女2男2女3男2男1男2---解法二:畫樹狀圖如下:所有等可能的結果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).19、(1)詳見解析;(2);(3).【解析】
(1)只要證明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先證明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;(3)想辦法證明AB垂直平分CF即可解決問題.【詳解】(1)證明:如圖1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切線,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如圖2中,∵△ACB∽△BED;四邊形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴=;(3)解:如圖3中,∵tan∠ABC==,AC=2,∴BC=4,BE=4,DE=8,AB=2,BD=4,易證△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,設CF交AB于H,則CF=2CH=2×.【點睛】本題考查相似三角形的判定和性質、圓周角定理、切線的性質、解直角三角形、線段的垂直平分線的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考??碱}型.20、(1)證明見解析;(2).【解析】
(1)先根據直角三角形斜邊上中線的性質,得出DE=AB=AE,DF=AC=AF,再根據AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;
(2)根據等邊三角形的性質得出EF=5,AD=5,進而得到菱形AEDF的面積S.【詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,點E、F分別是AB、AC的中點,
∴AE=AF,
∴AE=AF=DE=DF,
∴四邊形AEDF是菱形;
(2)如圖,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面積S=EF?AD=×5×5=.【點睛】本題考查菱形的判定與性質的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.21、6+.【解析】
利用負整數(shù)指數(shù)冪、零指數(shù)冪的意義和特殊角的三角函數(shù)值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.22、(1)補全統(tǒng)計表見解析;(2)該市2018年空氣質量等級條形統(tǒng)計圖見解析;(3)29天.【解析】
(1)由已知數(shù)據即可得;(2)根據統(tǒng)計表作圖即可得;(3)全年365天乘以樣本中“重度污染”和“嚴重污染”的天數(shù)和所占比例.【詳解】(1)補全統(tǒng)計表如下:AQI0~5051~100101~150151~200201~250300以上質量等級A(優(yōu))B(良)C(輕度污染)D(中度污染)E(重度污染)F(嚴重污染)天數(shù)16207331(2)該市2018年空氣質量等級條形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人胡同轉租合同范本
- 動物檢疫合同范例
- 東城區(qū)物流合同范本
- 加裝電梯簽約合同范本
- 創(chuàng)藝裝飾合同范本
- 人教版七年級歷史與社會上冊教學設計:3.1.1 稻作文化的印記
- 公司合伙合作合同范本
- 2025年超鈾元素及其提取設備項目申請報告模范
- 2025年涂鍍添加劑項目規(guī)劃申請報告
- 2025年超高分子量聚乙烯項目提案報告模范
- (三級)工業(yè)機器人運用與維護理論考試復習題庫(含答案)
- 2024年廣東省公務員錄用考試《行測》真題及解析
- 高中英語必背3500單詞表(完整版)
- GB/T 12723-2024單位產品能源消耗限額編制通則
- 海洋工程裝備保險研究
- 2024年廣東省深圳市中考英語試題含解析
- GB/T 16288-2024塑料制品的標志
- 麻風病防治知識課件
- 北師大版《書法練習指導》五年級下冊教案、教學內容、教學計劃、學情分析
- 3素炒圓白菜 教案
- 學生消防安全常識問卷及答案
評論
0/150
提交評論