版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
OpportunitiesandChallengesfromArtificialIntelligenceandMachineLearningfortheAdvancementofScience,
Technology,andtheOfficeofScienceMissions
AreportfortheAdvancedScientificComputingAdvisoryCommitteefromtheSubcommitteeonArtificialIntelligence,MachineLearning,Data-
intensiveScienceandHigh-PerformanceComputing
Chair:TonyHeySeptember2020
Caption:
ThecoverimageshowsthecrystalstructureofDy2Ti2O7inwhichthemagneticionDy3+oftherareearthelementDysprosium(shownincyan)occupiessitesonageometricallyfrustratedcorner-sharingtetrahedralnetwork.AI/MLmethodswereusedtosolveforthecouplingsinthematerialandtoidentifytheoriginofitsfreezingintoaglassystate.Neuralnetworkswereusedtoextractthephaseandcouplingsinthesystemfromdiffuseneutronscatteringdatabysolvingtheinversescatteringproblem.Thestrongsingle-ionicanisotropyofDy3+ionsdefinedbytheirmolecularenvironmentrestrictstheeffectivemagneticmomenttoaligneitherinwardoroutward.Themagneticmomentsimposeanice-rulewherelow-energyspinstatesarerestrictedtoatwo-inandtwo-outconfigurationforeachtetrahedronandthebreakingofthisice-rulecreatestwofractionalizedmagneticmonopoleswithoppositepolarity.
Acknowledgement:
AnjanaSamarakoonandAlanTennant,OakRidgeNationalLaboratory.
TableofContents
ExecutiveSummary 6
Introduction 6
Context 7
KeyFindings 8
RecommendationsforDOE’sOfficeofScience 12
Report 16
IntroductionandBackground 16
ChargeLettertoASCR 17
SubcommitteeInformationGatheringActivities 17
DOEastheleadagencyforAI/MLappliedtoFacilitiesScience 19
OpportunitiesandchallengesfromArtificialIntelligenceandMachineLearningforthe
advancementofscience,technology,andOfficeofSciencemissions 20
StrategiesfortheDOEOfficeofSciencetoaddressthechallengesanddeliveronthe
opportunities 21
Introduction 21
AIApplications 23
AIAlgorithmsandFoundations 31
AISoftwareInfrastructure 37
NewHardwareTechnologiesforAI 40
InstrumenttoEdgeComputing 41
AI/MLWorkforce:Training,Focusing,andRetention 42
UniversityPartnerships 44
CollaborationwithIndustry 45
Inter-AgencyCollaboration 46
InternationalCollaboration 47
ImportanceofASCR’slong-termAppliedMathematicsandComputerScience
ResearchPrograms 49
SummaryofConclusions 49
Figures 51
Figure1:AI,MachineLearning,DeepLearninginaNutshell 51
Figure2:WhatisaDataScientist? 52
Figure3:StructureofSCAIforScience10-yearInitiative 53
ReferencesandURLs 54
AppendixA:ChargeLetter 56
AppendixB:SubcommitteeMembers 58
AppendixD:ListofAcronyms 64
Acknowledgements 65
“AIwon’treplacethescientist,butscientistswhouseAIwillreplace
thosewhodon’t.”
AdaptedfromaMicrosoftreport,“TheFutureComputed”
ExecutiveSummary
Introduction
InFebruary2019,thePresidentsignedExecutiveOrder13859,MaintainingAmericanLeadershipinArtificialIntelligence[1].ThisorderlaunchedtheAmericanArtificialIntelligenceInitiative,aconcertedefforttopromoteandprotectAItechnologyandinnovationintheUnitedStates.TheInitiativeimplementsagovernment-widestrategyincollaborationandengagementwiththeprivatesector,academia,thepublic,andlike-mindedinternationalpartners.
Amongotheractions,keydirectivesintheInitiativecalledforFederalagenciesto:
PrioritizeAIresearchanddevelopmentinvestments,
Enhanceaccesstohigh-qualitycyberinfrastructureanddata,
EnsurethattheUSmaintainsaninternationalleadershiproleinthedevelopmentoftechnicalstandardsforAI,and
ProvideeducationandtrainingopportunitiestopreparetheAmericanworkforcefortheneweraofAI.
ThemissionoftheDepartmentofEnergy(DOE)istoensureAmerica’ssecurityandprosperitybyaddressingitsenergy,environmental,andnuclearchallengesthroughtransformativescienceandtechnologysolutions.IntermsofScienceandInnovation,theDOE’smissionistomaintainavibrantUSeffortinscienceandengineeringasacornerstoneofoureconomicprosperitywithclearleadershipinstrategicareas.
FromJulytoOctoberin2019,theArgonne,OakRidge,andBerkeleyNationalLaboratorieshostedaseriesoffourAIforScienceTownHallmeetingsinChicago,OakRidge,Berkeley,andWashingtonDC.Thefourmeetingswereattendedbyover1300scientistsfromthe17DOELabs,39companies,andover90universities.ThegoaloftheTownHallserieswas‘toexaminescientificopportunitiesintheareasofartificialintelligence,BigData,andhigh-performancecomputing(HPC)inthenextdecade,andtocapturethebigideas,grandchallenges,andnextstepstorealizingthese.’ThediscussionsatthemeetingswerecapturedinthefinalreportoftheAIforScienceTownHallmeetings[2].
InresponsetoachargeletterfromtheDOE’sOfficeofScience(SC),theAdvancedScientificComputingResearch(ASCR)programaskeditsAdvisoryCommittee(ASCAC)toestablishasubcommitteetoexplorethescientificopportunitiesandchallengesarisingfromtheintersectionofArtificialIntelligence(AI)andMachineLearning(ML)withdata-intensivescienceandhighperformancecomputing.Specifically,thisAIforSciencesubcommitteewasaskedto:
AssesstheopportunitiesandchallengesfromArtificialIntelligenceandMachineLearningfortheadvancementofscience,technology,andtheOfficeofSciencemissions.
IdentifystrategiesthatASCRcanuse,incoordinationwiththeotherSCprograms,toaddressthechallengesanddeliverontheopportunities.
ThisreportistheresultoftheSubcommittee’sinvestigationofthesechargequestions.TosetthecontextasummaryofAI,MLandDeepLearningisincludedherealongwithacharacterizationofdifferentrolesfordatascientists.Thisexecutivesummaryreportsthesubcommittee’skeyfindingsandrecommendations.
Context
ThetermArtificialIntelligencewascoinedbyJohnMcCarthyforaworkshopatDartmouthCollegeinNewHampshirein1956.Attheworkshop,McCarthyintroducedthephrase‘ArtificialIntelligence’whichhelaterdefinedas[3]:
‘Thescienceandengineeringofmakingintelligentmachines,especiallyintelligentcomputerprograms.’
Bycontrast,thefieldofMachineLearningislessambitiousandcanberegardedasasub-domainofartificialintelligence[4]:
‘Machinelearningaddressesthequestionofhowtobuildcomputersthatimproveautomaticallythroughexperience.Itisoneoftoday'smostrapidlygrowingtechnicalfields,lyingattheintersectionofcomputerscienceandstatistics,andatthecoreofartificialintelligenceanddatascience.Recentprogressinmachinelearninghasbeendrivenbothbythedevelopmentofnewlearningalgorithmsandtheoryandbytheongoingexplosionintheavailabilityofonlinedataandlow-costcomputation.’
Finally,DeepLearningneuralnetworksareasubsetof
MachineLearning
methodsthatarebasedon
artificialneuralnetworks
(ANNs)[5]:
‘AnANNisbasedonacollectionofconnectedunitsornodescalled
artificial
neurons
,whichlooselymodelthe
neurons
inabiologicalbrain.Eachconnection,likethe
synapses
inabiologicalbrain,cantransmitasignaltootherneurons.Anartificialneuronthatreceivesasignalthenprocessesitandcansignalneuronsconnectedtoit.The"signal"ataconnectionisa
realnumber
,andtheoutputofeachneuroniscomputedbysomenon-linearfunctionofthesumofitsinputs.Theconnectionsarecallededges.Neuronsandedgestypicallyhavea
weight
thatadjustsaslearningproceeds.’
Theartificialneuronsinthesenetworksarearrangedinlayersgoingfromaninputlayertoanoutputlayerwithconnectionsbetweentheneuronsinthedifferentlayers.DeeplearningneuralnetworksaremerelyasubsetofsuchANNswithverylargenumbersofhiddenlayers.OntheImageNetImageRecognitionChallenge,the2015competitionwaswonbyateamfromMicrosoftResearchusingaverydeepneuralnetworkofover100layersandachievedanerrorrateforobjectrecognitioncomparabletohumanerrorrates[6].Figure1triestocapturetheessenceofthisAI,MachineLearning,andDeepLearninghierarchy[7]
Figure2attemptstodefinethreedifferentrolesforadatascientist[8].Thefirstroleisthatofadataengineerwhoisexpertatoperatingclosetothecomputers,instruments,andsensorsthatgeneratethedata.ThesecondroleisthatofadataanalystwhousesadvancedstatisticsandAI/MLmethodstoexploretheexperimentaldatasetsandassisttheresearchertoextractnewscience.Finally,inthisclassification,thereisathirdroleofdatacuratorwhoisexpertinmanaginglargedatasets,curatingthedatawithsuitablemetadataforre-use,andlaterarchiving.AllthreeoftheseaspectsofdatasciencearerelevantfortheproposedAIforScienceinitiative.
KeyFindings
FindingA
ThegrowingconvergenceofAI,Data,andHPCprovidesaonceinagenerationopportunitytoprofoundlyacceleratescientificdiscovery,createsynergiesacrossscientificareas,andimproveinternationalcompetitiveness.
Scienceandcomputingarenowinaneraofpost-Moore’sLawsilicontechnologiesandthereisanurgentneedforasea-changeintheprogrammabilityandproductiveuseofincreasinglycomplex/heterogeneoussystemsandtheseamlessintegrationofdata,algorithms,andcomputingresources.DoingsowillhelpmanagethechallengesofBigData,carryingoutscienceatscaleusingDOE’smostadvancedfacilities,leveragetheworkforceattheLabs,andsetthestagefortheemergenceanddevelopmentofrobustandreliableAIsystemswiththeabilitytolearnforthemselvesindomain-sciencespecificareas.
FindingB
SciencecangreatlybenefitfromAImethodsandtools.However,commercialsolutionsandexistingalgorithmsarenotsufficienttoaddresstheneedsofscienceautomationandscienceknowledgeextractionfromcurrentandfutureDOEfacilitiesanddata.
CurrentAIsolutionscanbesuccessfullyappliedtoconductavarietyofdataanalyses.However,newalgorithms,foundations,andtoolsareessentialtoaddressinguniquescienceconcernsinabroadspectrumofscienceapplications.AIalgorithmsneedtobeabletodealwithsparse,heterogeneous,andun-labeleddatasetsthatareoftenexpensivetocollectandarchiveandbeabletogeneratemodelsthatincorporatedomainknowledgeandphysicalconstraints.AI-enabledexperimentaldesignandcontrolarenecessaryforoptimaluseofDOEfacilities.Inthesciencecontext,AImethodsneedtohaveprovablecorrectnessandperformance,beabletoexposebiases,andtoquantifyuncertainties,errors,andprecision.
FindingC
AdoptingAIforSciencetechnologiesthroughouttheOfficeofSciencewillenableUSscientiststotakeadvantageofthetremendousnewadvancesintheDOE’sscientificuserfacilities.
TheDOE’sOfficeofScienceprovidesUSresearcherswithaccesstothelargestandmostdiversesuiteofscientificexperimentalfacilitiesintheworld–fromX-raysynchrotronsandneutronsourcestointegrativegenomicsandatmosphericradiationfacilities–aswellastotheworld’smostcapablehighperformancecomputingfacilities.UpgradestotheseuserfacilitiesandnewnuclearphysicsfacilitiescomingonlinenowandoverthenextdecadewilldramaticallyincreasetheamountofnewdataproducedacrossallofthescientificdomainssupportedbytheOfficeofScience,posingnewchallengesandnewopportunities.Science-awareAItechnologieswillallowustoextractinformationandscientificunderstandingfromthesetremendousnewdatasources.
FindingD
RealizingthepotentialforagenerationalshiftinscientificexperimentationattheDOELaboratoriesduetoscience-drivenAI/MLtechnologiesrequiresfarmorethansimplycomputepowerandencompassesthefullspectrumofcomputinginfrastructures,rangingfromubiquitoussensorsandinterconnectivityacrossdevicestoreal-timemonitoringanddataanalytics,andwillrequireaconcertedandcoordinatedR&DeffortonAI/MLalgorithms,tools,andsoftwareinfrastructure.
AcrosstheSCprograms,scientificapplicationsofArtificialIntelligence(AI)andMachineLearning(ML)canbuildonthepowerofsensornetworks,edgecomputing,andhighperformancecomputerstotransformscienceandenergyresearchinthefuture.GiventhehighlyspecializednatureofmanyDOEfacilitiesandscientificresearchdomains,itisnotpossibletorelysolelyonthird-partyAI/MLresearchanddevelopment(R&D)forthistransformation.TheDOEwillneedtobuilditsownR&Dprogramsthatfocusonthemostchallengingscience-drivenapplications.SoftwareinfrastructurewillberequiredthatcombinesleadershipinAI/MLtoolsandalgorithmswiththeDOE’straditionalstrengthsinsimulationandmodelingtechnologiesandthatcanexecuteonnewcomputingplatformscapableofhighperformanceonbothtypesofapplications.TheanticipatedreturnswillhelpensurethattheUScontinuestomaintainandenhanceleadershipinbothdata-intensivescienceandhighperformancecomputing.
FindingE
TheDOELabsareuniquelypositionedtointegrateAI/MLtechnologiesacrossahostofscientificchallengesthankstotheenviablecultureofco-designteamsconsistingofscientificusers,instrumentproviders,theoreticalscientists,mathematiciansandcomputerscientiststhathasprovensosuccessfulintheExascaleComputingProject.
Thesubcommittee,therefore,seesacompellingneedforAI/MLtechnologiestobeincorporatedintoalloftheDOE’sscientificresearchcapabilitiesinordertoeffectivelysupporttheOfficeofScience’smissionsinenergy,nationalsecurity,fundamentalsciences,andtheenvironment.DOE’sNationalLaboratories,togetherwithUSuniversityandindustrypartners,havethenecessaryassetstoinitiatealarge-scaleprogramtoacceleratethedevelopmentofsuchcapabilitiesandthenecessaryworkforcetonotonlymeettheirSCmissionneedsbutalsobenefitallofDOE’sactivities.
FindingF
TheimpactofaDOE-drivenAI/MLstrategyforsciencewillhavenationalimplicationsfarbeyondtheOfficeofScienceandwilldrivenewindustrialinvestments,includingacceleratingengineeringdesigns,synthesizingmaterials,andoptimizingenergydevices,aswellasadvancinghardwareandsoftwarecomputingcapabilities.
Thebenefitstothenationindevelopingpowerfulandbroad-basedAIforSciencecapabilitiesintheDOELaboratorieswillextendwellbeyondtheDOE’sprograms.ThedevelopmentofcomprehensiveAI/MLcapabilitieswillbenefitothergovernmentagenciesandabroadrangeofindustriesinthiscountry,includingenergy,pharmaceutical,aircraft,automobile,entertainment,andothers.MorepowerfulAIcapabilitieswillallowthesediverseindustriestomorequicklyengineernewproductsthatcanimprovethenation’scompetitiveness.Inaddition,therewillbeconsiderableflow-downbenefitsthatresultfrommeetingboththehardwareandsoftwareAIchallenges.InitiatingamajorprogramfocusedonapplyingAI/MLtechnologiestotheDOEscientificchallengeswouldbelikelytoleadtosignificantgainsinUScompetitivenessinseveralcriticalareasandtechnologies.
FindingG
AworkforcetrainedinadvancedAI/MLtechnologieswouldplayapivotalroleinenhancingUScompetitiveness.
Thetraining,focusing,andretentionofacadreofyoungpeople,expertsinbothinventinganddeliveringthetechniquesandtechnologiesofAI/MLforscienceandengineeringapplications,iscriticaltothesuccessoftheAIforScienceagenda.TheOfficeofScienceDOELaboratoriescanplayakeyroleincooperationwiththeNationalScienceFoundation(NSF).Overthepast20years,theInformationTechnology(IT)industryhasexpandeddramatically,drivenbye-commerce,socialmedia,cloudservices,andsmartphones.Inrecentyears,theemergenceoftheInternetofThings(IoT),thewidespreaddeploymentofhealthcaresensors,increasingindustrialautomation,andthedevelopmentofautonomousvehicleshavefurtherexpandedthedomainofAI/MLdataanalyticsandservices.Inresponsetothesegrowingworkforcedemands,moststudentsarenowtrainedinsoftwaretoolsandtechniquesthattargetcommercialopportunities.Atpresent,commercialtoolsarerathergenericandnotwell-targetedtoscientificapplications.AnAIforScienceinitiativewoulddeliverscientificAI/MLtoolsandenvironmentsappropriatefortraininganewgenerationofscientistsandengineers.
FindingH
PartneringwithotherAgenciesandwithinternationaleffortswillbeimportanttodeliverontheambitiousgoalsofanAIforScienceinitiative.
TheNSFandNIH,thetwoothermajorscience-focusedfundingagenciesintheUS,alsohaveorareplanning,majorinvestmentsinAI/MLprogramsfortheirscientificdomains.InseveralareasthereareclearsynergiesofresearchinterestandtheDOEshouldexplorepossiblemechanisms
forcollaborativeprojectswithotheragenciessuchasNISTandDODinanyDOEAIforScience
initiative.
OthercountrieshavealsorecognizedthepotentialbenefitsofapplyingAL/MLtechnologiestoscience.ThesubcommitteebelievesthattherewouldbeabenefitintheDOEcollaboratingwith‘like-mindedinternationalpartners’onaspectsofanAIforScienceresearchagendathatarelikelytobeofmutualbenefit.
RecommendationsforDOE’sOfficeofScience
Creationofa10-yearAIforScienceInitiative
Inordertocreatetheworld-leadingAIsystemsandapplicationsneededtodrivescientificproductivityanddiscoveryinscienceandtechnologydramaticallybeyondthatachievablewithtraditionalscientificsupercomputing,werecommendthattheDOEOfficeofSciencestartaten-yearprogramtodevelopanambitiousAIforScienceinitiative,asrecommendedintherecentPCASTreport[9].Thisprogramshouldencompassfoundationalresearchintonew,science-awareAImethodologies,specificallydesignedforDOEmission-criticalchallenges,andAIsolutionsthatcanbedeployedinoperationalsettingsatleadingDOEresearchfacilities.Theinitiativeshouldprovideaclear,guidedroadmapfromresearchtodeployment.TheDOElaboratoriescanplayakeyrolehere,offeringleading-edgeexascalesupercomputersandlargeexperimentalfacilitiesgeneratingincreasinglylargescientificdatasets,aswellasprovidingcriticalexpertiseinmathematics,computerscience,andexperiencewithDOEmission-specificapplications.Nootheragencyhasthebreadth,criticalmass,orrecentlargeprojectmanagementexperiencetoundertakethiscross-disciplinaryAIforSciencechallenge.However,thereisaclearcaseforthebenefitsofcollaborationwithotheragenciesandothercountries,toleverageexistingexpertisetomaximumadvantage.Partnershipswithotherfundingagenciesandothercountriesarethereforestronglyencouraged.
StructureofanSCAIforScienceInitiative
ItisrecommendedthatthisAIforScienceinitiativebestructuredaroundfourmajorAIR&Dthemes:
AI-enabledapplications
AIalgorithmsandfoundationalresearch
AIsoftwareinfrastructure
NewhardwaretechnologiesforAI
Thesubcommitteebelievesthatthisten-yearAIforScienceinitiativeshouldbefundedatthesamescaleasthesuccessfulExascaleComputingInitiative(ECI)andExascaleComputingProject(ECP).Essentialforthesuccessofsuchaninitiativeisthattheworkofthesefourthemesmustbeclosely-coupledinamannersimilartothatusedintheECP,astheadvancesandimprovementsinoneareacaninformadvancesandimprovementsinotherareas.
Figure3illustratesanoverviewofapossibleroadmapforsuchanAIforScienceinitiative.AsfortheECIandECP,theroadmapforthisproposedAIforScienceinitiativeenvisagesaninitial‘incubation’researchphaseofcoordinatedprojectswithco-designcentersconnectingthefourmajorthemes.PartnershipsacrossallOfficeofSciencedomains,withparticipationfromuniversitiesandprivateindustry,wouldbeinitiatedearlyintheprogram.ThegoalofthisresearchphaseistospecifytheapplicationgrandchallengesandAI/MLtoolsandservicesrequiredasdeliverablesinthemorefocusedprojectR&DandDeploymentphases,wherebroad
engagementoftheDOEresearchcommunitybecomescritical.SincetheseappliedR&DandDeploymentphaseswillinevitablygeneratenewquestionsandchallenges,havingtheresearchphasecontinuingandoverlappingwiththeR&DandDeploymentphaseswillsignificantlyincreasethechancesofsuccessfortheAIforScienceProject.
AnInstrument-to-EdgeInitiative
ThesubcommitteebelievesthatASCR,inclosecooperationwithBESandwiththeotherscienceprogramsintheOfficeofScience,shouldworkwithscientists,users,andthebroadacademiccommunitytodefinerequirements,conductresearch,competitiveprocurementanddesignahighlyintegratedend-to-endsystemandsoftwarestackthatconnectsinstrumentsattheedgetotheneededAIcomputingresources.Integratingnationalandglobaldatasources(largescaleexperimentalfacilities,observationalnetworksterrestrial&space-based,etc.)posesuniqueopportunitiesandchallengesthatrequireaddressingfoundationalresearchinthecontextofleading-edgescientificexperiments.Integratedsystemsforacquiring,analyzing,transforming,storing,andmaintainingscientificresults,capturingprovenance,andcontributingbroadlyaccessedanalyticalworkflowswithinDOEsupportedcomputationalinfrastructurecouldbetransformative.Thereare,however,severechallengesthatwillneedtobeconfrontedintermsofprivacy,security,commerciallicensingofdata,andintegrateddataservices.
BuildingonASCR’sco-designexperienceinECP,applicationusers,softwareinfrastructuredevelopers,AI/MLresearchers,andLabandindustryhardwarespecialistsshouldbeencouragedtodefine,develop,andcontributetoacommonsoftwarestackforAI/MLEdgecomputingresourcesacrossthedifferentfacilities.ThesoftwareinfrastructureshouldsupportsomegenericservicesatthefacilitiesbutalsoallowtheeasycreationofspecializedAI-basedsoftwarepipelinesspecifictothefacilityandcapableofsupportingcouplingtoparticularinstrumentsinsomecases.
Training,focusing,andretentionofAI/MLworkforce
Industry,nationallaboratories,government,andbroadareasofacademicresearcharemakingmoreusethaneverbeforeofAI,ML,andsimulation-baseddecision-making.Thistrendisapparentacrossmanydomainssuchasenergy,manufacturing,finance,andtransportation.TheseareallareasinwhichAIisplayinganincreasinglysignificantrole,withmanymoreexamplesacrossscience,engineering,business,andgovernment.Researchandinnovation,bothinacademiaandintheprivatesector,areincreasinglydrivenbylarge-scalecomputationalapproachesusingAIandMLtechnologies.WiththissignificantandincreasedusecomesademandforaworkforceversedintechnologiesnecessaryforeffectiveandefficientAI/ML-basedcomputationalmodelingandsimulationandbigdataanalytics,aswellasthefundamentalsofAI/MLalgorithms.Graduateswiththeinterdisciplinaryexpertiseneededtodevelopand/orutilizeAItechniquesandmethodsinordertoadvancetheunderstandingofphysicalphenomenainaparticularscientific,engineering,orbusinessfieldandalsotosupportbetterdecision-makingareinhighdemand.
Astrongresearchprogramwillcruciallyrelyonacomplementaryeducationandskillscomponent,whichisasimportantasprovidingadequateinfrastructuresupport.AsemphasizedintheASCRECPTransitionreport[10],thisisalsoatimelyandimportantopportunitytofocusSCeffortstocreateamorediverseandinclusiveworkforce.Acontinuingsupplyofhigh-qualitycomputationalanddatascientistsavailableforworkatDOElaboratoriesisofvitalimportance.Inhighperformancemodelingandsimulation,forexample,theDOEComputationalScienceGraduateFellowship(CSGF)programhassuccessfullyprovidedsupportandguidancetosomeofthenation'sbestscientificgraduatestudents,andmanyofthesestudentsarenowemployedinDOElaboratories,privateindustry,andeducationalinstitutions.Weneedasimilarfellowshipprogramtomeettheincreasingrequirementforcomputationalanddatascientiststrainedtotackleexascaleanddata-intensivecomputingchallenges.Inaddition,theDOESCshouldexplorethepossibilitiesforcollaborationwiththeNSFabouttheprovisionofrelevanttrainingprogramsinAI/MLtechnologiesandtheirapplicationtoscience.
Inter-Agencycollaboration
AlthoughtheNSFhaslongbeenregardedastheleadagencyforfundamentalAIresearch,DOEisclearlytheleadagencyforresearchinvolvingtheintersectionof‘BigScience,BigData,andBigComputing.’DOEhasnotonlyestablishednationalandinternationalleadershipinHPCandsupercomputingbutisalsoaleaderintheapplicationofAI/MLtechnologiestotheverylargescientificdatasetsgeneratedbytheirlarge-scaleexperimentalfacilities.
WiththeNIH,theDOESChasasuccessfulcollaborationwiththeNationalCancerInstitute(NCI)intheCANDLEproject[11].DOEisnowdevelopinganMOUwithboththeNSFandNIHonaprogramofcollaborativeresearchinComputationalNeuroscience.Thesubcommittee,therefore,recommendsthattheSCexplorenewopportunitiestoworkwithbothNSFandNIHinareaswheretherewouldbeaclearbenefitforscientificprogressunderaDOE-ledAIforScienceinitiative.TheremayalsobeopportunitiestoworkwithotherUSfundingagencies,suchasNISTandDOD,inareasofmutualinterest.
Internationalcollaboration
Thereisaneedforbroad-based,coordinatedactionbylike-mindedinternationalpartnerstoharnesstheglobalscientificsoftwarecommunitytoaddressthetremendousopportunitiesindata-intensivesciencestemmingfromthehugeincreaseinscientificdatacollectionrates.ComputationalanddataanalyticalmethodsdrivenbyAI/MLarenowuniversallyacceptedasindispensableforfutureprogressinscienceandengineering.
InternationalleadershipinAIforScienceoverthecomingdecadewillhingeontherealizationofanintegratedsetofprogramsspanningthefourinterdependentareasnotedabove–AI-enabledapplications,AIalgorithmsandfoundationalresearch,AIsoftwareinfrastructure,andnewhardwa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024全新一代智能家居設(shè)備租賃服務(wù)合同下載3篇
- 2024年度新能源汽車充電樁安裝與銷售獨家代理合同3篇
- 二項式定理及應(yīng)用課件
- 寬帶合作合同范例
- 門面提前終止合同范例
- 購房出資合同范例
- 商鋪出兌合同范例
- 黃金產(chǎn)品維修合同范例
- 勞務(wù)合同范例兒
- 風(fēng)帆股合同范例
- 醫(yī)院內(nèi)急診重癥快速反應(yīng)小組建設(shè)專家共識1
- 化工建設(shè)綜合項目審批作業(yè)流程圖
- 2023-2024學(xué)年度九上圓與無刻度直尺作圖專題研究(劉培松)
- 2023年度四川公需科目:數(shù)字經(jīng)濟(jì)與驅(qū)動發(fā)展
- 汽車制造業(yè)的柔性生產(chǎn)與敏捷制造
- 五年級上冊小數(shù)乘除練習(xí)300道及答案
- 不動產(chǎn)抵押登記手續(xù)
- 公安機(jī)關(guān)執(zhí)法執(zhí)勤規(guī)范用語
- 無人機(jī)技術(shù)在消防救援中的作用與局限
- 一年級道德與法治無紙筆期末檢測質(zhì)量分析
- 形式邏輯期末考試含答案
評論
0/150
提交評論