人工智能報告_第1頁
人工智能報告_第2頁
人工智能報告_第3頁
人工智能報告_第4頁
人工智能報告_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Artificialintelligence,

MachineLearning

and

DeepLearning

aretermsyoumighthearoften,butcanyoureallytellthedifferencebetweenthethree?Let’sfindout.

ArtificialIntelligence

Abitofhistory

Theterm

ArtificialIntelligence

firstappearedin1956duringa

Dartmouthconference

tointroducecomputermethodsthatwouldbeabletodemonstratereasonandcreativityinsolvingtaskswithgreaterefficiencyandproductivitythanhumans.

Evolutionoftheterm

+442071835820

info@magora.co.uk

sales@magora.co.uk

Whenwe’retalkingabouttheAIoftoday,weshouldn’tinterpret“intelligence”inthesamewayas“intellect”.

Creatinghuman-likemachinesisafairlyinterestingconceptfromascientificpointofviewbutisn’twhatindustriesdemand.

Wedon’tneedemotionalrobotslikeinthefilm“BicentennialMan”.Whatwedoneedistoprovidelightning-fastcustomersupport,analysefinancialtrendswithadvancedaccuracyandincreasesafetybycheckinginvisitorsusingasystemthatcannotbefooledorbribed.Andthiscanbeachievedbyapplyingadvanced

mathematicalalgorithms

.

So,AIisascientificfieldthatistryingtomodelthemostsignificantintellectualfunctionsofthehumanbrain:

naturallanguageprocessing

,autonomouslearningandcreativity.

However,withinthescopeofthisterm,wecanalsoreferto

ITareaofexpertise.Thegoalistocreateintelligentsystemsthatcanmakereasonabledecisionsandtakeindependentactionsinordertosolvetasks,thusliberatingstafffromroutinejobs,optimisingbusinessprocessesandsoon;

itcanbealsounderstoodasthegeneralabilityofanartificiallymodifiedsystemtointerprettheenvironmentordatainput,learnfromitandusethisknowledgetoachievecertaingoals.

AIspecialistsaremainlygoingintwodirections:

solvingproblemsconnectedwiththedevelopmentandimplementationof

AIsystems

inordertobringthemfurtherinlinewithhumancapabilities;

creatingsoftwarethatconnectsallthelatestachievementsintoonesystemeffectiveatsatisfyingtheneedsofthemarket.

+442071835820

info@magora.co.uk

sales@magora.co.uk

InordertocreateanArtificialIntelligencesolution,weneedtoapplyoneorseveralofthefollowingmethods:

MachineReasoning–thisencompassestheprocessesofplanning,datarepresentation,searchingandoptimisationforAIsystems;

Robotics–thisisthefieldofsciencethatconcernsbuilding,developingandcontrollingrobots,includinghardwareissues(sensors,trackersanddrives)andintegrationofallthecomponentsintothecybersystems’architecture;

MachineLearningisthestudyofalgorithmsandcomputermodelsasusedbymachinesinordertoperformagiventask.SomeexamplesareClassicalLearning,NeuralnetworksandReinforcementLearning.

Allinall,artificialintelligenceincludesmachinelearningasoneofthemethodsofitspracticalimplementation.Withinmachinelearning,therearemanydifferentalgorithmssuchas

T-

distributedscholasticneighbour

embedding,

Leabra

and

Neuralnetworks(NN)

.Inturn,DeeplearningisjustoneoftheimplementationmethodsforNNalgorithms,alsoknownasdeepneurallearningordeepneuralnetwork.

AbitmoreaboutMachineLearningandDeepLearning

+442071835820

info@magora.co.uk

sales@magora.co.uk

YoucancallMachineLearningaclassoragroupofmethodsthathasthegoalofteachingacomputertosolveataskduringtheprocessofcrackingsimilartasksandfindingpatterns.Therearedifferentwaystoclassifythesemethods.

Thisisthesystemwehavechosen:

supervised,whereahumanguidesthecomputerandcorrectsitsmistakes;unsupervised,wherethemachinelearnstofindpatternsbyitself;

reinforcement-throughasystemoftreatsandpunishmentsthecomputerlearnstotaketheoptimumactionsinacertainenvironment.

Nowlet’shaveamoredetailedlookathowexactlytheprocessofMachinelearninghappens.

Howdoesthecomputerlearn?

DataScience

+442071835820

info@magora.co.uk

sales@magora.co.uk

DataScienceliesattheheartofAItechnology.WhatdodatascientistsdoandhowisitconnectedwithMachineLearning?

Forthecomputertolearnitisnecessarytohavethesethreecomponents:

Adataset–acollectionofvaluesthatrelatetoaparticulararea.Forinstance,aclassregisterisadatabaseofgradesofacertaingroupofstudentsinmanydifferentsubjects;

features–atraitthatrepresentsmeasurablepiecesofdatathatcanbeusedforanalysis.Followingourexample,itcantaketheformofcolumnssuchas“Name”,“Subject”or“Grade”;algorithm–computermethodsofsolvingacertaintask.Forexample,youcanwriteanalgorithmthatcalculatestheaveragescoreineachsubject.

Datascientists

arethepeoplewhocollect,filterandclassifydatainordertoprovidethecomputerwithclearmaterialbywhichtolearn.Errorsandlacunesindatabasesleadtoincorrectresults.So,withouttheworkofdatascientists,eventhemostsophisticatedAIalgorithmsareuseless.

Computerlearning

+442071835820

info@magora.co.uk

sales@magora.co.uk

TomakeMLworkyouneedahugecollectionofdata–thiscancompriseimages,videos,textorevensituations.Youwanttoteachthecomputertoperformacertainaction–forexample,findphotosthatcontainkitties–andputthemintoaspecialfolder.

Foreachimagethatyoushowthecomputerinthiscase,oneresponsewouldbegiven–it’seitherakittyornotakitty.Thisdependencybetweentheobject(theimage)andresponse(kittyornotkitty)iscalledatrainingset.

+442071835820

info@magora.co.uk

sales@magora.co.uk

IfyouchoosetoworkwithDeepLearning,yousimplydownload100thousandimagesofkittiestotheprocessorandwaituntilitfindsthepatterns–fourlegs,twoears,atailandsoon.Themachineneedstoretrievethehiddenpatternsinordertobuildanalgorithmthatisabletoprovideaclassificationpreciseenoughtoapplytoeverypossibleinputobject.

Aninductionmethodlike

ReinforcementLearning

impliesthatyouallowthecomputertolearnbyitselfthroughtrialanderror.Thecomputergetsarewardeverytimeitdoessomethingright.Forexample,inthecaseofadriverlesscar,nothittingthepassengerwillearnit+500points.Ifitmakesmistakesthehumanwilldeductthepoints–verysimilartothewayinwhichchildrenlearn.Inclassicalmachinelearning,youcaneithersitandhighlightthetraitstypicalforcatsyourself,oryoucanuseunsupervisedmethodslikeclassificationandclustering.Inordertoestimatetheprecisionoftheresponsesyouget,youneedtoinventfunctionalqualitycriteria.

Inreallife,thetaskscanbeverydifferent.Forexample,thedataconcerningtheobjectscanbeincomplete,imprecise,non-quantitativeandheterogeneous.Variousmethodscopewithcertaintasksbetterthanwithothers,whichiswhythereareso

manydifferentmethods

.

Asfortheresults,machinessometimesdoachieveimpressiveresultsin

diagnosisand

businessintelligence

,thoughthey’restillveryfarfrombeingabletolearnwithouthumanhelp.

Moredetailsaboutdeeplearningareavailableviathis

link.

Popularmachinelearningalgorithms

+442071835820

info@magora.co.uk

sales@magora.co.uk

WehavealreadytalkedaboutDeepLearningandReinforcementLearning,butthereareotherpopularalgorithmsthatweuseeveryday.Forexample:

NaiveBayesclassifier

–usedforspamfiltration,frauddetectionandsentimentanalysis.

Regression–oftenappliedtoforecaststockfluctuationsandmedicaldiagnosis.

Clustering–usedtoanalyseandlabeldataformarketsegmentationandconsumerbehaviour.

Generalisation–recommendationsystems,riskmanagement.

NeuralNetworks–betterthananyothersystemforfacerecognition,butcopeswellwithpracticallyanytask.

Todayit’sbelievedthattrainingcomputerstothinklikehumansismorelikelytobeachievedthroughtheuseofneuralnetworks.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論