




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Artificialintelligence,
MachineLearning
and
DeepLearning
aretermsyoumighthearoften,butcanyoureallytellthedifferencebetweenthethree?Let’sfindout.
ArtificialIntelligence
Abitofhistory
Theterm
ArtificialIntelligence
firstappearedin1956duringa
Dartmouthconference
tointroducecomputermethodsthatwouldbeabletodemonstratereasonandcreativityinsolvingtaskswithgreaterefficiencyandproductivitythanhumans.
Evolutionoftheterm
+442071835820
info@magora.co.uk
sales@magora.co.uk
Whenwe’retalkingabouttheAIoftoday,weshouldn’tinterpret“intelligence”inthesamewayas“intellect”.
Creatinghuman-likemachinesisafairlyinterestingconceptfromascientificpointofviewbutisn’twhatindustriesdemand.
Wedon’tneedemotionalrobotslikeinthefilm“BicentennialMan”.Whatwedoneedistoprovidelightning-fastcustomersupport,analysefinancialtrendswithadvancedaccuracyandincreasesafetybycheckinginvisitorsusingasystemthatcannotbefooledorbribed.Andthiscanbeachievedbyapplyingadvanced
mathematicalalgorithms
.
So,AIisascientificfieldthatistryingtomodelthemostsignificantintellectualfunctionsofthehumanbrain:
naturallanguageprocessing
,autonomouslearningandcreativity.
However,withinthescopeofthisterm,wecanalsoreferto
ITareaofexpertise.Thegoalistocreateintelligentsystemsthatcanmakereasonabledecisionsandtakeindependentactionsinordertosolvetasks,thusliberatingstafffromroutinejobs,optimisingbusinessprocessesandsoon;
itcanbealsounderstoodasthegeneralabilityofanartificiallymodifiedsystemtointerprettheenvironmentordatainput,learnfromitandusethisknowledgetoachievecertaingoals.
AIspecialistsaremainlygoingintwodirections:
solvingproblemsconnectedwiththedevelopmentandimplementationof
AIsystems
inordertobringthemfurtherinlinewithhumancapabilities;
creatingsoftwarethatconnectsallthelatestachievementsintoonesystemeffectiveatsatisfyingtheneedsofthemarket.
+442071835820
info@magora.co.uk
sales@magora.co.uk
InordertocreateanArtificialIntelligencesolution,weneedtoapplyoneorseveralofthefollowingmethods:
MachineReasoning–thisencompassestheprocessesofplanning,datarepresentation,searchingandoptimisationforAIsystems;
Robotics–thisisthefieldofsciencethatconcernsbuilding,developingandcontrollingrobots,includinghardwareissues(sensors,trackersanddrives)andintegrationofallthecomponentsintothecybersystems’architecture;
MachineLearningisthestudyofalgorithmsandcomputermodelsasusedbymachinesinordertoperformagiventask.SomeexamplesareClassicalLearning,NeuralnetworksandReinforcementLearning.
Allinall,artificialintelligenceincludesmachinelearningasoneofthemethodsofitspracticalimplementation.Withinmachinelearning,therearemanydifferentalgorithmssuchas
T-
distributedscholasticneighbour
embedding,
Leabra
and
Neuralnetworks(NN)
.Inturn,DeeplearningisjustoneoftheimplementationmethodsforNNalgorithms,alsoknownasdeepneurallearningordeepneuralnetwork.
AbitmoreaboutMachineLearningandDeepLearning
+442071835820
info@magora.co.uk
sales@magora.co.uk
YoucancallMachineLearningaclassoragroupofmethodsthathasthegoalofteachingacomputertosolveataskduringtheprocessofcrackingsimilartasksandfindingpatterns.Therearedifferentwaystoclassifythesemethods.
Thisisthesystemwehavechosen:
supervised,whereahumanguidesthecomputerandcorrectsitsmistakes;unsupervised,wherethemachinelearnstofindpatternsbyitself;
reinforcement-throughasystemoftreatsandpunishmentsthecomputerlearnstotaketheoptimumactionsinacertainenvironment.
Nowlet’shaveamoredetailedlookathowexactlytheprocessofMachinelearninghappens.
Howdoesthecomputerlearn?
DataScience
+442071835820
info@magora.co.uk
sales@magora.co.uk
DataScienceliesattheheartofAItechnology.WhatdodatascientistsdoandhowisitconnectedwithMachineLearning?
Forthecomputertolearnitisnecessarytohavethesethreecomponents:
Adataset–acollectionofvaluesthatrelatetoaparticulararea.Forinstance,aclassregisterisadatabaseofgradesofacertaingroupofstudentsinmanydifferentsubjects;
features–atraitthatrepresentsmeasurablepiecesofdatathatcanbeusedforanalysis.Followingourexample,itcantaketheformofcolumnssuchas“Name”,“Subject”or“Grade”;algorithm–computermethodsofsolvingacertaintask.Forexample,youcanwriteanalgorithmthatcalculatestheaveragescoreineachsubject.
Datascientists
arethepeoplewhocollect,filterandclassifydatainordertoprovidethecomputerwithclearmaterialbywhichtolearn.Errorsandlacunesindatabasesleadtoincorrectresults.So,withouttheworkofdatascientists,eventhemostsophisticatedAIalgorithmsareuseless.
Computerlearning
+442071835820
info@magora.co.uk
sales@magora.co.uk
TomakeMLworkyouneedahugecollectionofdata–thiscancompriseimages,videos,textorevensituations.Youwanttoteachthecomputertoperformacertainaction–forexample,findphotosthatcontainkitties–andputthemintoaspecialfolder.
Foreachimagethatyoushowthecomputerinthiscase,oneresponsewouldbegiven–it’seitherakittyornotakitty.Thisdependencybetweentheobject(theimage)andresponse(kittyornotkitty)iscalledatrainingset.
+442071835820
info@magora.co.uk
sales@magora.co.uk
IfyouchoosetoworkwithDeepLearning,yousimplydownload100thousandimagesofkittiestotheprocessorandwaituntilitfindsthepatterns–fourlegs,twoears,atailandsoon.Themachineneedstoretrievethehiddenpatternsinordertobuildanalgorithmthatisabletoprovideaclassificationpreciseenoughtoapplytoeverypossibleinputobject.
Aninductionmethodlike
ReinforcementLearning
impliesthatyouallowthecomputertolearnbyitselfthroughtrialanderror.Thecomputergetsarewardeverytimeitdoessomethingright.Forexample,inthecaseofadriverlesscar,nothittingthepassengerwillearnit+500points.Ifitmakesmistakesthehumanwilldeductthepoints–verysimilartothewayinwhichchildrenlearn.Inclassicalmachinelearning,youcaneithersitandhighlightthetraitstypicalforcatsyourself,oryoucanuseunsupervisedmethodslikeclassificationandclustering.Inordertoestimatetheprecisionoftheresponsesyouget,youneedtoinventfunctionalqualitycriteria.
Inreallife,thetaskscanbeverydifferent.Forexample,thedataconcerningtheobjectscanbeincomplete,imprecise,non-quantitativeandheterogeneous.Variousmethodscopewithcertaintasksbetterthanwithothers,whichiswhythereareso
manydifferentmethods
.
Asfortheresults,machinessometimesdoachieveimpressiveresultsin
diagnosisand
businessintelligence
,thoughthey’restillveryfarfrombeingabletolearnwithouthumanhelp.
Moredetailsaboutdeeplearningareavailableviathis
link.
Popularmachinelearningalgorithms
+442071835820
info@magora.co.uk
sales@magora.co.uk
WehavealreadytalkedaboutDeepLearningandReinforcementLearning,butthereareotherpopularalgorithmsthatweuseeveryday.Forexample:
NaiveBayesclassifier
–usedforspamfiltration,frauddetectionandsentimentanalysis.
Regression–oftenappliedtoforecaststockfluctuationsandmedicaldiagnosis.
Clustering–usedtoanalyseandlabeldataformarketsegmentationandconsumerbehaviour.
Generalisation–recommendationsystems,riskmanagement.
NeuralNetworks–betterthananyothersystemforfacerecognition,butcopeswellwithpracticallyanytask.
Todayit’sbelievedthattrainingcomputerstothinklikehumansismorelikelytobeachievedthroughtheuseofneuralnetworks.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 菏澤學院教師管理辦法
- 用電用戶信用管理辦法
- 賬戶支付結算管理辦法
- 育嬰師職業(yè)資格課件
- 肝衰竭護理課件
- 肝移植護理課件
- 釘釘群直播講數學試卷
- 高一普高數學試卷
- 團服銷售培訓課件
- 灌云縣初級中學數學試卷
- DL∕T 1076-2017 火力發(fā)電廠化學調試導則
- 死亡醫(yī)學證明書填寫培訓
- DB6101-T 3186-2024 物業(yè)服務評價技術規(guī)范
- 抖音紅娘話術
- 創(chuàng)設生活化教學與情境模擬
- 做自己的心理壓力調節(jié)師智慧樹知到期末考試答案章節(jié)答案2024年嘉興大學
- 砂石料供應、運輸、售后服務方案
- 2023年安徽省公務員《申論》試題及答案解析(C卷)
- 安檢設備采購安裝調試方案
- 血糖監(jiān)測小講課ppt
- 實習生-OFFER正式通知函
評論
0/150
提交評論