2023-2024學年湖南省長沙市芙蓉區(qū)中考數(shù)學最后一模試卷含解析_第1頁
2023-2024學年湖南省長沙市芙蓉區(qū)中考數(shù)學最后一模試卷含解析_第2頁
2023-2024學年湖南省長沙市芙蓉區(qū)中考數(shù)學最后一模試卷含解析_第3頁
2023-2024學年湖南省長沙市芙蓉區(qū)中考數(shù)學最后一模試卷含解析_第4頁
2023-2024學年湖南省長沙市芙蓉區(qū)中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖南省長沙市芙蓉區(qū)中考數(shù)學最后一模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標系中,點A在x軸的正半軸上,點B的坐標為(0,4),將△ABO繞點B逆時針旋轉60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經過點O',則k的值為()A.2 B.4 C.4 D.82.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20183.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD4.一枚質地均勻的骰子,骰子的六個面上分別刻有1到6的點數(shù),投擲這樣的骰子一次,向上一面點數(shù)是偶數(shù)的結果有()A.1種 B.2種 C.3種 D.6種5.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.6.如圖,△ABC繞點A順時針旋轉45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l7.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m8.若關于x的不等式組無解,則a的取值范圍是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥39.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=1.其中正確的是()A.①②③ B.僅有①② C.僅有①③ D.僅有②③10.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等二、填空題(共7小題,每小題3分,滿分21分)11.已知|x|=3,y2=16,xy<0,則x﹣y=_____.12.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.13.若使代數(shù)式有意義,則x的取值范圍是_____.14.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F(xiàn)分別在OA,,OB上,則圖中陰影部分的面積為__________.15.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點D為AB的中點,將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,則D′B長為_____.16.分解因式:a3-12a2+36a=______.17.如果a2﹣a﹣1=0,那么代數(shù)式(a﹣)的值是.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,19.(5分)已知,拋物線的頂點為,它與軸交于點,(點在點左側).()求點、點的坐標;()將這個拋物線的圖象沿軸翻折,得到一個新拋物線,這個新拋物線與直線交于點.①求證:點是這個新拋物線與直線的唯一交點;②將新拋物線位于軸上方的部分記為,將圖象以每秒個單位的速度向右平移,同時也將直線以每秒個單位的速度向上平移,記運動時間為,請直接寫出圖象與直線有公共點時運動時間的范圍.20.(8分)北京時間2019年3月10日0時28分,我國在西昌衛(wèi)星發(fā)射中心用長征三號乙運載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進入預定軌道.如圖,火星從地面處發(fā)射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求發(fā)射臺與雷達站之間的距離;求這枚火箭從到的平均速度是多少(結果精確到0.01)?21.(10分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.22.(10分)如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經過點A(3,-1),與y軸交于點B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標.23.(12分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)24.(14分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結果保留根號和π)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)題意可以求得點O'的坐標,從而可以求得k的值.【詳解】∵點B的坐標為(0,4),

∴OB=4,

作O′C⊥OB于點C,

∵△ABO繞點B逆時針旋轉60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴點O′的坐標為:(2,2),

∵函數(shù)y=(x>0)的圖象經過點O',

∴2=,得k=4,

故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化,解題的關鍵是利用數(shù)形結合的思想和反比例函數(shù)的性質解答.2、A【解析】

根據(jù)去括號法則、絕對值的性質、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則,熟知去括號法則、絕對值的性質、零指數(shù)冪及負整數(shù)指數(shù)冪的計算法則是解決問題的關鍵.3、D【解析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定4、C【解析】試題分析:一枚質地均勻的正方體骰子的六個面上分別刻有1到6的點數(shù),擲一次這枚骰子,向上的一面的點數(shù)為偶數(shù)的有3種情況,故選C.考點:正方體相對兩個面上的文字.5、A【解析】

根據(jù)輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據(jù)兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質是解題關鍵.6、D【解析】∵△ABC繞點A順時針旋轉45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉的性質以及等腰直角三角形的性質等知識,得出AD,AF,DC′的長是解題關鍵.7、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應用,關鍵是構建直角三角形,解直角三角形求出答案.8、A【解析】【分析】利用不等式組取解集的方法,根據(jù)不等式組無解求出a的取值范圍即可.【詳解】∵不等式組無解,∴a﹣4≥3a+2,解得:a≤﹣3,故選A.【點睛】本題考查了一元一次不等式組的解集,熟知一元一次不等式組的解集的確定方法“同大取大、同小取小、大小小大中間找、大大小小無處找”是解題的關鍵.9、A【解析】

解:∵乙出發(fā)時甲行了2秒,相距8m,∴甲的速度為8/2=4m/s.∵100秒時乙開始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正確.∵100秒時乙到達終點,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正確.∵甲走到終點一共需耗時500/4=125s,,∴c=125-2=1s.因此③正確.終上所述,①②③結論皆正確.故選A.10、D【解析】

分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關鍵是熟練掌握這三種數(shù)的計算方法.二、填空題(共7小題,每小題3分,滿分21分)11、±3【解析】分析:本題是絕對值、平方根和有理數(shù)減法的綜合試題,同時本題還滲透了分類討論的數(shù)學思想.詳解:因為|x|=1,所以x=±1.因為y2=16,所以y=±2.又因為xy<0,所以x、y異號,當x=1時,y=-2,所以x-y=3;當x=-1時,y=2,所以x-y=-3.故答案為:±3.點睛:本題是一道綜合試題,本題中有分類的數(shù)學思想,求解時要注意分類討論.12、30【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據(jù)折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質13、x≠﹣2【解析】

直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關鍵是熟練的掌握分式有意義的條件.14、8π﹣8【解析】

連接EF、OC交于點H,根據(jù)正切的概念求出FH,根據(jù)菱形的面積公式求出菱形FOEC的面積,根據(jù)扇形面積公式求出扇形OAB的面積,計算即可.【詳解】連接EF、OC交于點H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點睛】本題考查了扇形面積的計算、菱形的性質,熟練掌握扇形的面積公式、菱形的性質、靈活運用銳角三角函數(shù)的定義是解題的關鍵.15、.【解析】

試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點D為AB的中點,∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點:旋轉的性質.16、a(a-6)2【解析】

原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.17、1【解析】分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣)的第一個括號內通分,并把分子分解因式后約分化簡,然后把a2﹣a=1代入即可.詳解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式===a(a﹣1)=a2﹣a=1,故答案為1點睛:本題考查了分式的化簡求值,解題的關鍵是正確掌握分式混合運算的順序:先算乘除,后算加減,有括號的先算括號里,整體代入法是求代數(shù)式的值常用的一種方法.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)EC=1.【解析】

(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質可推出∠F=∠BDE,再根據(jù)對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結論;(2)根據(jù)解直角三角形和等邊三角形的性質即可得到結論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點睛】本題主要考查等腰三角形的判定與性質、余角的性質、對頂角的性質等知識點,關鍵根據(jù)相關的性質定理,通過等量代換推出∠F=∠FDA,即可推出結論.19、(1)B(-3,0),C(1,0);(2)①見解析;②≤t≤6.【解析】

(1)根據(jù)拋物線的頂點坐標列方程,即可求得拋物線的解析式,令y=0,即可得解;(2)①根據(jù)翻折的性質寫出翻折后的拋物線的解析式,與直線方程聯(lián)立,求得交點坐標即可;②當t=0時,直線與拋物線只有一個交點N(3,-6)(相切),此時直線與G無交點;第一個交點出現(xiàn)時,直線過點C(1+t,0),代入直線解析式:y=-4x+6+t,解得t=;最后一個交點是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【詳解】(1)因為拋物線的頂點為M(-1,-2),所以對稱軸為x=-1,可得:,解得:a=,c=,所以拋物線解析式為y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式為y=-x2-x,與直線y=-4x+6聯(lián)立可得:x2-3x+=0,解得:x1=x2=3,所以該一元二次方程只有一個根,所以點N(3,-6)是唯一的交點;②≤t≤6.【點睛】本題主要考查了圖形運動,解本題的要點在于熟知一元二次方程的相關知識點.20、(Ⅰ)發(fā)射臺與雷達站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.【解析】

(Ⅰ)在Rt△ACD中,根據(jù)銳角三角函數(shù)的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進而可得AB的長,即可得答案.【詳解】(Ⅰ)在中,,≈0.74,∴.答:發(fā)射臺與雷達站之間的距離約為.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:這枚火箭從到的平均速度大約是.【點睛】本題考查解直角三角形的應用,熟練掌握銳角三角函數(shù)的定義是解題關鍵.21、(1)證明見解析(2)7/24(3)25/6【解析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。設AG=x,則GB=1﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=?!?。(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4?!遲an∠ABG=tan∠ADE=?!郋H=HD×=4×?!逧F垂直平分AD,AB⊥AD,∴HF是△ABD的中位線?!郒F=AB=×6=3?!郋F=EH+HF=。(1)根據(jù)翻折變換的性質可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結論。(2)由(1)可知GD=GB,故AG+GB=AD,設AG=x,則GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的長,從而得出tan∠ABG的值。(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據(jù)tan∠ABG的值即可得出EH的長,同理可得HF是△ABD的中位線,故可得出HF的長,由EF=EH+HF即可得出結果。22、(1)y=-x2+2x+2;(2)詳見解析;(3)點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】

(1)根據(jù)題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標,根據(jù)點的坐標求出AB、BC、AC的值,根據(jù)勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據(jù)相似三角形的判定和性質求出PE的長,即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當x=0時,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當點Q在線段AP上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如圖,當點Q在PA延長線上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴==3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±,∴P(1+,-3),或(1-,-3),綜上可知:點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【點睛】本題考查了二次函數(shù)的圖象和性質,用待定系數(shù)法求二次函數(shù)的解析式,相似三角形的性質和判定等知識點,能求出符合的所有情況是解此題的關鍵.23、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論