版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省蚌埠市重點(diǎn)中學(xué)2023-2024學(xué)年高三第三次測(cè)評(píng)數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是上的偶函數(shù),且當(dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.2.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.3.《易·系辭上》有“河出圖,洛出書(shū)”之說(shuō),河圖、洛書(shū)是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.4.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線(xiàn)的人數(shù)有所增加B.與2016年相比,2019年一本達(dá)線(xiàn)人數(shù)減少C.與2016年相比,2019年二本達(dá)線(xiàn)人數(shù)增加了0.3倍D.2016年與2019年藝體達(dá)線(xiàn)人數(shù)相同5.已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.6.的展開(kāi)式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.807.函數(shù)在上的圖象大致為()A. B. C. D.8.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.129.復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿(mǎn)足.則等于()A. B. C. D.10.在區(qū)間上隨機(jī)取一個(gè)數(shù),使直線(xiàn)與圓相交的概率為()A. B. C. D.11.一個(gè)陶瓷圓盤(pán)的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤(pán)中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.14712.設(shè),集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)α、β為互不重合的平面,m,n是互不重合的直線(xiàn),給出下列四個(gè)命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號(hào)為_(kāi)____.14.設(shè),滿(mǎn)足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為_(kāi)_____.15.已知點(diǎn)是拋物線(xiàn)的準(zhǔn)線(xiàn)上一點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),P為拋物線(xiàn)上的點(diǎn),且,若雙曲線(xiàn)C中心在原點(diǎn),F(xiàn)是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線(xiàn)C的離心率為_(kāi)_____.16.已知數(shù)列的前項(xiàng)和為,且成等差數(shù)列,,數(shù)列的前項(xiàng)和為,則滿(mǎn)足的最小正整數(shù)的值為_(kāi)_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)于任意,有,求實(shí)數(shù)的值.18.(12分)在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.(Ⅰ)求直線(xiàn)的直角坐標(biāo)方程與曲線(xiàn)的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),求的值.19.(12分)如圖,四邊形中,,,,沿對(duì)角線(xiàn)將翻折成,使得.(1)證明:;(2)求直線(xiàn)與平面所成角的正弦值.20.(12分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動(dòng)點(diǎn),過(guò)作與軸平行的直線(xiàn),直線(xiàn)與交于點(diǎn),直線(xiàn)與直線(xiàn)交于點(diǎn),判斷是否為定值,說(shuō)明理由.21.(12分)管道清潔棒是通過(guò)在管道內(nèi)釋放清潔劑來(lái)清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個(gè)如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長(zhǎng)度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請(qǐng)用角表示清潔棒的長(zhǎng);(2)若想讓清潔棒通過(guò)該彎頭,清潔下一段圓管,求能通過(guò)該彎頭的清潔棒的最大長(zhǎng)度.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用對(duì)數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)?,,?又,故.因?yàn)楫?dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對(duì)數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時(shí)注意選擇合適的中間數(shù)來(lái)傳遞不等關(guān)系,本題屬于中檔題.2、B【解析】
由題意畫(huà)出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識(shí),考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.3、C【解析】
先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿(mǎn)足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類(lèi)問(wèn)題可通過(guò)古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.4、A【解析】
設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過(guò)簡(jiǎn)單的計(jì)算逐一驗(yàn)證選項(xiàng)A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線(xiàn)人數(shù)為,2019年不上線(xiàn)人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯(cuò)誤;2019年二本達(dá)線(xiàn)人數(shù),2016年二本達(dá)線(xiàn)人數(shù),增加了倍,故C錯(cuò)誤;2016年藝體達(dá)線(xiàn)人數(shù),2019年藝體達(dá)線(xiàn)人數(shù),故D錯(cuò)誤.故選:A.【點(diǎn)睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識(shí)圖的能力,是一道較為簡(jiǎn)單的統(tǒng)計(jì)類(lèi)的題目.5、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.6、B【解析】
展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開(kāi)式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)函數(shù)的奇偶性及函數(shù)在時(shí)的符號(hào),即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),排除選項(xiàng)A,B;當(dāng)時(shí),,,排除選項(xiàng)D,故選:C.【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對(duì)稱(chēng)性,屬于中檔題.8、B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B9、A【解析】
根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),,則,,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】
根據(jù)直線(xiàn)與圓相交,可求出k的取值范圍,根據(jù)幾何概型可求出相交的概率.【詳解】因?yàn)閳A心,半徑,直線(xiàn)與圓相交,所以,解得所以相交的概率,故選C.【點(diǎn)睛】本題主要考查了直線(xiàn)與圓的位置關(guān)系,幾何概型,屬于中檔題.11、B【解析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點(diǎn)睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題12、B【解析】
先化簡(jiǎn)集合A,再求.【詳解】由得:,所以,因此,故答案為B【點(diǎn)睛】本題主要考查集合的化簡(jiǎn)和運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和計(jì)算推理能力.二、填空題:本題共4小題,每小題5分,共20分。13、④【解析】
根據(jù)直線(xiàn)和平面,平面和平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.【詳解】對(duì)于①,當(dāng)m∥n時(shí),由直線(xiàn)與平面平行的定義和判定定理,不能得出m∥α,①錯(cuò)誤;對(duì)于②,當(dāng)m?α,n?α,且m∥β,n∥β時(shí),由兩平面平行的判定定理,不能得出α∥β,②錯(cuò)誤;對(duì)于③,當(dāng)α∥β,且m?α,n?β時(shí),由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯(cuò)誤;對(duì)于④,當(dāng)α⊥β,且α∩β=m,n?α,m⊥n時(shí),由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號(hào)是④.故答案為:④.【點(diǎn)睛】本題考查了直線(xiàn)和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.14、【解析】
先根據(jù)條件畫(huà)出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線(xiàn),過(guò)可行域內(nèi)的點(diǎn)時(shí)取得最大值,從而得到一個(gè)關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線(xiàn)過(guò)直線(xiàn)與直線(xiàn)的交點(diǎn)時(shí),目標(biāo)函數(shù)取得最大,即,即,而.故答案為.【點(diǎn)睛】本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用、簡(jiǎn)單的線(xiàn)性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.15、【解析】
由點(diǎn)坐標(biāo)可確定拋物線(xiàn)方程,由此得到坐標(biāo)和準(zhǔn)線(xiàn)方程;過(guò)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,根據(jù)拋物線(xiàn)定義可得,可知當(dāng)直線(xiàn)與拋物線(xiàn)相切時(shí),取得最小值;利用拋物線(xiàn)切線(xiàn)的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線(xiàn)定義得到實(shí)軸長(zhǎng),結(jié)合焦距可求得所求的離心率.【詳解】是拋物線(xiàn)準(zhǔn)線(xiàn)上的一點(diǎn)拋物線(xiàn)方程為,準(zhǔn)線(xiàn)方程為過(guò)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,則設(shè)直線(xiàn)的傾斜角為,則當(dāng)取得最小值時(shí),最小,此時(shí)直線(xiàn)與拋物線(xiàn)相切設(shè)直線(xiàn)的方程為,代入得:,解得:或雙曲線(xiàn)的實(shí)軸長(zhǎng)為,焦距為雙曲線(xiàn)的離心率故答案為:【點(diǎn)睛】本題考查雙曲線(xiàn)離心率的求解問(wèn)題,涉及到拋物線(xiàn)定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線(xiàn)定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時(shí),直線(xiàn)與拋物線(xiàn)相切,進(jìn)而根據(jù)拋物線(xiàn)切線(xiàn)方程的求解方法求得點(diǎn)坐標(biāo).16、1【解析】
本題先根據(jù)公式初步找到數(shù)列的通項(xiàng)公式,然后根據(jù)等差中項(xiàng)的性質(zhì)可解得的值,即可確定數(shù)列的通項(xiàng)公式,代入數(shù)列的表達(dá)式計(jì)算出數(shù)列的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)相消法計(jì)算出前項(xiàng)和,再代入不等式進(jìn)行計(jì)算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時(shí),.當(dāng)時(shí),.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿(mǎn)足的最小正整數(shù)的值為1.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列求通項(xiàng)公式、裂項(xiàng)相消法求前項(xiàng)和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計(jì)算、邏輯思維能力和數(shù)學(xué)運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)(3)【解析】
(1)假設(shè)公差,公比,根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式,化簡(jiǎn)式子,可得,,然后利用公式法,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,利用錯(cuò)位相減法求和,可得結(jié)果.(3)計(jì)算出,代值計(jì)算并化簡(jiǎn),可得結(jié)果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的綜合應(yīng)用,以及利用錯(cuò)位相減法求和,屬基礎(chǔ)題.18、(Ⅰ)直線(xiàn)的直角坐標(biāo)方程為;曲線(xiàn)的普通方程為;(Ⅱ).【解析】
(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線(xiàn)參數(shù)方程代入拋物線(xiàn)的普通方程,可得,而根據(jù)直線(xiàn)參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線(xiàn)的直角坐標(biāo)方程為由曲線(xiàn)的參數(shù)方程,消去參數(shù)可得曲線(xiàn)的普通方程為.易知點(diǎn)在直線(xiàn)上,直線(xiàn)的參數(shù)方程為(為參數(shù)).將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通方程,并整理得.設(shè)是方程的兩根,則有.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線(xiàn)參數(shù)方程的幾何意義,是一道容易題.19、(1)見(jiàn)證明;(2)【解析】
(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線(xiàn)與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線(xiàn)與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識(shí)可得,∴.又可得,.∴,.設(shè)平面的一個(gè)法向量為,由,得,令,則得.又,設(shè)直線(xiàn)與平面所成的角為,則.所以直線(xiàn)與平面所成角的正弦值為.【點(diǎn)睛】利用向量法求解直線(xiàn)和平面所成角時(shí),關(guān)鍵點(diǎn)是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線(xiàn)的方向向量和平面的法向量.解題時(shí)通過(guò)平面的法向量和直線(xiàn)的方向向量來(lái)求,即求出斜線(xiàn)的方向向量與平面的法向量所夾的銳角或鈍角的補(bǔ)角,取其余角就是斜線(xiàn)與平面所成的角.求解時(shí)注意向量的夾角與線(xiàn)面角間的關(guān)系.20、(1);(2),理由見(jiàn)解析.【解析】
(1)求出橢圓的上、下焦點(diǎn)坐標(biāo),利用橢圓的定義求得的值,進(jìn)而可求得的值,由此可得出橢圓的方程;(2)設(shè)點(diǎn)的坐標(biāo)為,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國(guó)低軌互聯(lián)網(wǎng)星座行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)碳封存解決方案行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球高速木屑制粒機(jī)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球家用吊扇燈行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)非動(dòng)力重力滾筒輸送機(jī)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)超聲波封訂機(jī)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球PTC熱敏電阻燒結(jié)爐行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球纖維蛋白密封劑行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球全向堆高AGV行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球天花板安裝防護(hù)罩行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 光伏項(xiàng)目的投資估算設(shè)計(jì)概算以及財(cái)務(wù)評(píng)價(jià)介紹
- 糧油廠食品安全培訓(xùn)
- 南京信息工程大學(xué)《教師領(lǐng)導(dǎo)力》2022-2023學(xué)年第一學(xué)期期末試卷
- 電力安全工作規(guī)程(完整版)
- 電力基本知識(shí)培訓(xùn)課件
- 2024年湖南省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 借名買(mǎi)車(chē)的協(xié)議書(shū)范文范本
- 《2024 ESC血壓升高和高血壓管理指南》解讀
- 北京中考英語(yǔ)詞匯表(1600詞匯)
- 20世紀(jì)西方音樂(lè)智慧樹(shù)知到期末考試答案章節(jié)答案2024年北京大學(xué)
- 塑料 聚氨酯生產(chǎn)用聚醚多元醇 堿性物質(zhì)含量的測(cè)定
評(píng)論
0/150
提交評(píng)論