BP神經(jīng)網(wǎng)絡(luò)在巖層爆破參數(shù)優(yōu)化中的應(yīng)用_第1頁
BP神經(jīng)網(wǎng)絡(luò)在巖層爆破參數(shù)優(yōu)化中的應(yīng)用_第2頁
BP神經(jīng)網(wǎng)絡(luò)在巖層爆破參數(shù)優(yōu)化中的應(yīng)用_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

BP神經(jīng)網(wǎng)絡(luò)在巖層爆破參數(shù)優(yōu)化中的應(yīng)用Title:ApplicationofBPNeuralNetworksinOptimizationofRockBlastingParametersAbstract:Rockblastingisawidelyusedtechniqueinmining,quarrying,andconstructionindustriestobreaklargerocksintosmallerfragments.Theefficiencyandsafetyofblastingoperationsdependontheoptimalselectionofvariousparameters.Inrecentyears,artificialintelligencetechniquessuchasneuralnetworkshavebeenappliedtooptimizerockblastingparameters.ThispaperfocusesontheapplicationofBackpropagation(BP)neuralnetworksintheoptimizationofrockblastingparameters.Introduction:Rockblastinginvolvesthereleaseofenergyinaconfinedspacetofragmentrocksintosmallerpieces.Theparametersinvolvedinthesuccessfulexecutionofablastingoperationincludeexplosivetype,blastholediameterandlength,spacing,burden,stemming,initiationsequence,anddelaytime.Theoptimalselectionoftheseparametersisessentialtomaximizerockfragmentation,minimizeenergyconsumption,reduceenvironmentalimpacts,andensuresafety.BPNeuralNetworks:TheBPneuralnetworkisatypeofartificialneuralnetworkthatiswidelyusedforpatternrecognition,dataanalysis,andoptimizationproblems.Itisafeedforwardneuralnetworkthatconsistsofaninputlayer,oneormorehiddenlayers,andanoutputlayer.Thenetworkistrainedusingabackpropagationalgorithm,whichadjuststheweightsandbiasesofthenetworktominimizethedifferencebetweenthepredictedoutputandthedesiredoutput.ApplicationinRockBlastingParameterOptimization:1.DatasetCreation:ThefirststepinusingaBPneuralnetworkforoptimizingrockblastingparametersisthecreationofadataset.Dataiscollectedfrompastblastingoperations,includinginformationonthegeologicalconditions,blastdesign,andresultingfragmentation.Thisdatasetisusedtotraintheneuralnetwork.2.InputandOutputSelection:Theinputvariablesfortheneuralnetworkareselectedbasedontheirrelevanceandavailability.Thesemayincluderockproperties(density,hardness),blastholecharacteristics(diameter,spacing),andexplosiveproperties(type,energy).Thedesiredoutputoftheneuralnetworkistypicallythefragmentationsizedistribution.3.NetworkTraining:Thecreateddatasetisdividedintotrainingandtestingsets.Thetrainingsetisusedtoadjusttheweightsandbiasesoftheneuralnetworkusingthebackpropagationalgorithm.Thetestingsetisusedtoevaluatetheperformanceofthetrainednetworkandassessitsgeneralizationcapabilities.4.Optimization:Oncetheneuralnetworkistrained,itcanbeusedtooptimizetherockblastingparameters.Byinputtingthedesiredfragmentationsizedistribution,thenetworkcanprovidetheoptimalcombinationofparametersthatwouldachievethedesiredoutcome.Thisoptimizationprocessreducestheneedfortime-consumingandcostlytrialanderrormethods.AdvantagesofBPNeuralNetworks:1.Non-LinearRelationship:Rockblastingparametershavecomplexandnon-linearrelationshipswiththeresultingfragmentation.Traditionaloptimizationtechniquesmaystruggletocapturetheserelationships,whereasBPneuralnetworksexcelathandlingnon-linearproblems.2.Adaptability:Thetrainedneuralnetworkcanadapttodifferentgeologicalconditionsandblastingscenarios,makingitaversatiletoolforoptimization.3.Predictability:Oncetrained,theneuralnetworkcanprovidevaluableinsightsintotheimpactofchangingindividualparametersonthefragmentationsizedistribution.4.TimeandCostSavings:TheoptimizationofrockblastingparametersusingBPneuralnetworksreducestheneedforextensivefieldexperimentsandensuresmoreeffectiveuseofresources,leadingtosignificanttimeandcostsavings.Conclusion:TheapplicationofBPneuralnetworksinoptimizingrockblastingparametershasproventobeavaluabletoolinthemining,quarrying,andconstructionindustries.Byutilizinghistoricaldataandtrainingtheneuralnetwork,itcanaccuratelypredicttheoptimalcombinationofparameterstoachievethedesiredfragmentationsizedistribution.TheadvantagesofBPneuralnetworksinhandlingnon-linearrelationships,adaptability,predictability,andtimeandcostsavingsmakethemanattractive

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論