下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BP神經(jīng)網(wǎng)絡(luò)在巖層爆破參數(shù)優(yōu)化中的應(yīng)用Title:ApplicationofBPNeuralNetworksinOptimizationofRockBlastingParametersAbstract:Rockblastingisawidelyusedtechniqueinmining,quarrying,andconstructionindustriestobreaklargerocksintosmallerfragments.Theefficiencyandsafetyofblastingoperationsdependontheoptimalselectionofvariousparameters.Inrecentyears,artificialintelligencetechniquessuchasneuralnetworkshavebeenappliedtooptimizerockblastingparameters.ThispaperfocusesontheapplicationofBackpropagation(BP)neuralnetworksintheoptimizationofrockblastingparameters.Introduction:Rockblastinginvolvesthereleaseofenergyinaconfinedspacetofragmentrocksintosmallerpieces.Theparametersinvolvedinthesuccessfulexecutionofablastingoperationincludeexplosivetype,blastholediameterandlength,spacing,burden,stemming,initiationsequence,anddelaytime.Theoptimalselectionoftheseparametersisessentialtomaximizerockfragmentation,minimizeenergyconsumption,reduceenvironmentalimpacts,andensuresafety.BPNeuralNetworks:TheBPneuralnetworkisatypeofartificialneuralnetworkthatiswidelyusedforpatternrecognition,dataanalysis,andoptimizationproblems.Itisafeedforwardneuralnetworkthatconsistsofaninputlayer,oneormorehiddenlayers,andanoutputlayer.Thenetworkistrainedusingabackpropagationalgorithm,whichadjuststheweightsandbiasesofthenetworktominimizethedifferencebetweenthepredictedoutputandthedesiredoutput.ApplicationinRockBlastingParameterOptimization:1.DatasetCreation:ThefirststepinusingaBPneuralnetworkforoptimizingrockblastingparametersisthecreationofadataset.Dataiscollectedfrompastblastingoperations,includinginformationonthegeologicalconditions,blastdesign,andresultingfragmentation.Thisdatasetisusedtotraintheneuralnetwork.2.InputandOutputSelection:Theinputvariablesfortheneuralnetworkareselectedbasedontheirrelevanceandavailability.Thesemayincluderockproperties(density,hardness),blastholecharacteristics(diameter,spacing),andexplosiveproperties(type,energy).Thedesiredoutputoftheneuralnetworkistypicallythefragmentationsizedistribution.3.NetworkTraining:Thecreateddatasetisdividedintotrainingandtestingsets.Thetrainingsetisusedtoadjusttheweightsandbiasesoftheneuralnetworkusingthebackpropagationalgorithm.Thetestingsetisusedtoevaluatetheperformanceofthetrainednetworkandassessitsgeneralizationcapabilities.4.Optimization:Oncetheneuralnetworkistrained,itcanbeusedtooptimizetherockblastingparameters.Byinputtingthedesiredfragmentationsizedistribution,thenetworkcanprovidetheoptimalcombinationofparametersthatwouldachievethedesiredoutcome.Thisoptimizationprocessreducestheneedfortime-consumingandcostlytrialanderrormethods.AdvantagesofBPNeuralNetworks:1.Non-LinearRelationship:Rockblastingparametershavecomplexandnon-linearrelationshipswiththeresultingfragmentation.Traditionaloptimizationtechniquesmaystruggletocapturetheserelationships,whereasBPneuralnetworksexcelathandlingnon-linearproblems.2.Adaptability:Thetrainedneuralnetworkcanadapttodifferentgeologicalconditionsandblastingscenarios,makingitaversatiletoolforoptimization.3.Predictability:Oncetrained,theneuralnetworkcanprovidevaluableinsightsintotheimpactofchangingindividualparametersonthefragmentationsizedistribution.4.TimeandCostSavings:TheoptimizationofrockblastingparametersusingBPneuralnetworksreducestheneedforextensivefieldexperimentsandensuresmoreeffectiveuseofresources,leadingtosignificanttimeandcostsavings.Conclusion:TheapplicationofBPneuralnetworksinoptimizingrockblastingparametershasproventobeavaluabletoolinthemining,quarrying,andconstructionindustries.Byutilizinghistoricaldataandtrainingtheneuralnetwork,itcanaccuratelypredicttheoptimalcombinationofparameterstoachievethedesiredfragmentationsizedistribution.TheadvantagesofBPneuralnetworksinhandlingnon-linearrelationships,adaptability,predictability,andtimeandcostsavingsmakethemanattractive
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電子合同法律效力認(rèn)定及證據(jù)保全操作規(guī)程3篇
- 二零二五年度汽車銷售與售后服務(wù)咨詢合同2篇
- 二零二五年鋼筋制作與安裝勞動(dòng)合同規(guī)范3篇
- 二零二五版企業(yè)品牌形象策劃執(zhí)行合同3篇
- 二零二五年度工傷事故賠償協(xié)議及后續(xù)心理咨詢服務(wù)合同6篇
- 二零二五年度電梯產(chǎn)品研發(fā)與創(chuàng)新基金投資合同3篇
- 二零二五年度蜜蜂養(yǎng)殖環(huán)境監(jiān)測(cè)與改善合同2篇
- 小麥種子繁育生產(chǎn)合同(2篇)
- 二零二五年電子商務(wù)SET協(xié)議安全技術(shù)實(shí)施合同3篇
- 二零二五年智能工廠生產(chǎn)過程監(jiān)控合同樣本3篇
- 2024年采購代發(fā)貨合作協(xié)議范本
- 2024年業(yè)績換取股權(quán)的協(xié)議書模板
- 顳下頜關(guān)節(jié)疾?。谇活M面外科學(xué)課件)
- 工業(yè)自動(dòng)化設(shè)備維護(hù)保養(yǎng)指南
- 2024人教新版七年級(jí)上冊(cè)英語單詞英譯漢默寫表
- 《向心力》參考課件4
- 2024至2030年中國膨潤土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報(bào)告
- 2024年深圳中考數(shù)學(xué)真題及答案
- 土方轉(zhuǎn)運(yùn)合同協(xié)議書
- Module 3 Unit 1 Point to the door(教學(xué)設(shè)計(jì))-2024-2025學(xué)年外研版(三起)英語三年級(jí)上冊(cè)
- 智能交通信號(hào)燈安裝合同樣本
評(píng)論
0/150
提交評(píng)論