




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
CS425/ECE428DistributedSystemsFall2018IndranilGupta(Indy)Lecture2-3:IntroductiontoCloudComputingAllslides?IG12TheHype!Forresterin2010–Cloudcomputingwillgofrom$40.7billionin2010to$241billionin2020.GoldmanSachssayscloudcomputingwillgrowatannualrateof30%from2013-2018Hadoopmarkettoreach$20.8Bbyby2018:TransparencyMarketResearchCompaniesandevenFederal/stategovernmentsusingcloudcomputingnow:3ManyCloudProvidersAWS:AmazonWebServicesEC2:ElasticComputeCloudS3:SimpleStorageServiceEBS:ElasticBlockStorageMicrosoftAzureGoogleCloud/ComputeEngine/AppEngineRightscale,Salesforce,EMC,Gigaspaces,10gen,Datastax,Oracle,VMWare,Yahoo,ClouderaAndmanymanymore!4TwoCategoriesofCloudsCanbeeithera(i)publiccloud,or(ii)privatecloudPrivatecloudsareaccessibleonlytocompanyemployeesPubliccloudsprovideservicetoanypayingcustomer:AmazonS3(SimpleStorageService):storearbitrarydatasets,payperGB-monthstoredAsof2018:1-4cperGBmonthAmazonEC2(ElasticComputeCloud):uploadandrunarbitraryOSimages,payperCPUhourusedAsof2018:0.5cperCPUhrto$5.4perCPUhr(dependingonstrength)Googlecloud:similarpricingasaboveGoogleAppEngine/ComputeEngine:developapplicationswithintheirappengineframework,uploaddatathatwillbeimportedintotheirformat,andrun5CustomersSaveTimeand$$$DavePower,AssociateInformationConsultantatEliLillyandCompany:“WithAWS,Powerssaid,anewservercanbeupandrunninginthreeminutes(itusedtotakeEliLillysevenandahalfweekstodeployaserverinternally)anda64-nodeLinuxclustercanbeonlineinfiveminutes(comparedwiththreemonthsinternally).…It'sjustshyofinstantaneous.”IngoElfering,VicePresidentofInformationTechnologyStrategy,GlaxoSmithKline:“WithOnlineServices,weareabletoreduceourIToperationalcostsbyroughly30%ofwhatwe’respending”JimSwartz,CIO,Sybase:“AtSybase,aprivatecloudofvirtualserversinsideitsdatacenterhassavednearly$US2millionannuallysince2006,Swartzsays,becausethecompanycansharecomputingpowerandstorageresourcesacrossservers.”100sofstartupsinSiliconValleycanharnesslargecomputingresourceswithoutbuyingtheirownmachines.6ButwhatexactlyISacloud?7WhatisaCloud?It’sacluster!It’sasupercomputer!It’sadatastore!It’ssuperman!NoneoftheaboveAlloftheaboveCloud=Lotsofstorage+computecyclesnearby8WhatisaCloud?Asingle-sitecloud(aka“Datacenter”)consistsofComputenodes(groupedintoracks)Switches,connectingtheracksAnetworktopology,e.g.,hierarchicalStorage(backend)nodesconnectedtothenetworkFront-endforsubmittingjobsandreceivingclientrequests(Oftencalled“three-tierarchitecture”)SoftwareServicesAgeographicallydistributedcloudconsistsofMultiplesuchsitesEachsiteperhapswithadifferentstructureandservices9ASampleCloudTopologySothen,whatisacluster?10“ACloudyHistoryofTime”1940195019601970198019902000TimesharingCompanies&DataProcessingIndustryGridsPeertopeersystemsClustersThefirstdatacenters!PCs(notdistributed!)Cloudsanddatacenters201211“ACloudyHistoryofTime”19401950196019701980199020002012CloudsGrids(1980s-2000s):GriPhyN(1970s-80s)OpenScienceGridandLambdaRail(2000s)Globus&otherstandards(1990s-2000s)TimesharingIndustry(1975):MarketShare:Honeywell34%,IBM15%,Xerox10%,CDC10%,DEC10%,UNIVAC10%Honeywell6000&635,IBM370/168,Xerox940&Sigma9,DECPDP-10,UNIVAC1108DataProcessingIndustry-1968:$70M.1978:$3.15BillionFirstlargedatacenters:ENIAC,ORDVAC,ILLIACManyusedvacuumtubesandmechanicalrelaysBerkeleyNOWProjectSupercomputersServerFarms(e.g.,Oceano)P2PSystems(90s-00s)ManyMillionsofusersManyGBperday12Trends:TechnologyDoublingPeriods–storage:12mos,bandwidth:9mos,and(whatlawisthis?)cpucomputecapacity:18mosThenandNowBandwidth1985:mostly56Kbpslinksnationwide2015:TbpslinkswidespreadDiskcapacityToday’sPCshaveTBs,farmorethana1990supercomputer13Trends:UsersThenandNowBiologists:1990:wererunningsmallsingle-moleculesimulationsToday:CERN’sLargeHadronColliderproducingmanyPB/year14PropheciesIn1965,MIT'sFernandoCorbatóa(chǎn)ndtheotherdesignersoftheMulticsoperatingsystemenvisionedacomputerfacilityoperating“l(fā)ikeapowercompanyorwatercompany”.PlugyourthinclientintothecomputingUtilityandPlayyourfavoriteIntensiveCompute&CommunicateApplicationHavetoday’scloudsbroughtusclosertothisreality?Thinkaboutit.15FourFeaturesNewinToday’sCloudsMassivescale.On-demandaccess:Pay-as-you-go,noupfrontcommitment.AndanyonecanaccessitData-intensiveNature:WhatwasMBshasnowbecomeTBs,PBsandXBs.Dailylogs,forensics,Webdata,etc.Humanshavedatanumbness:Wikipedia(large)compressedisonlyabout10GB!NewCloudProgrammingParadigms:MapReduce/Hadoop,NoSQL/Cassandra/MongoDBandmanyothers.HighinaccessibilityandeaseofprogrammabilityLotsofopen-sourceCombinationofoneormoreofthesegivesrisetonovelandunsolveddistributedcomputingproblemsincloudcomputing.16I.MassiveScaleFacebook[GigaOm,2012]30Kin2009->60Kin2010->180Kin2012Microsoft[NYTimes,2008]150KmachinesGrowthrateof10Kpermonth80KtotalrunningBingIn2013,MicrosoftCosmoshad110Kmachines(4sites)Yahoo![2009]:100KSplitintoclustersof4000AWSEC2[RandyBias,2009]40Kmachines8cores/machineeBay[2012]:50KmachinesHP[2012]:380Kin180DCsGoogle[2011,DataCenterKnowledge]:900K17Quiz:WhereistheWorld’sLargestDatacenter?18Quiz:WhereistheWorld’sLargestDatacenter?(2017)“TheCitadel”Nevada.7.2Millionsq.ft.(2015)InChicago!350EastCermak,Chicago,1.1MILLIONsq.ft.Sharedbymanydifferent“carriers”CriticaltoChicagoMercantileExchangeSee:/news/data-center-news/top-10-largest-data-centers-world/19Whatdoesadatacenterlooklikefrominside?AvirtualwalkthroughadatacenterReference:/cleantech/a-rare-look-inside-facebooks-oregon-data-center-photos-video/20ServersFrontBackInSomehighlysecure(e.g.,financialinfo)21PowerOff-siteOn-siteWUE=AnnualWaterUsage/ITEquipmentEnergy(L/kWh)–lowisgoodPUE=TotalfacilityPower/ITEquipmentPower–lowisgood (e.g.,Google~1.1)22CoolingAirsuckedinfromtop(also,Bugzappers)WaterpurifiedWatersprayedintoair15motorsperserverbank23Extra-FunVideostoWatchMicrosoftGFSDatacenterTour(Youtube)/watch?v=hOxA1l1pQIw
TimelapseofaDatacenterConstructionontheInside(Fortune500company)/watch?v=ujO-xNvXj3g
24II.On-demandaccess:*aaSClassificationOn-demand:rentingacabvs.(previously)rentingacar,orbuyingone.E.g.:AWSElasticComputeCloud(EC2):afewcentstoafew$perCPUhourAWSSimpleStorageService(S3):afewcentsperGB-monthHaaS:HardwareasaServiceYougetaccesstobareboneshardwaremachines,dowhateveryouwantwiththem,Ex:YourownclusterNotalwaysagoodideabecauseofsecurityrisksIaaS:InfrastructureasaServiceYougetaccesstoflexiblecomputingandstorageinfrastructure.Virtualizationisonewayofachievingthis(cgroups,Kubernetes,Dockers,VMs,…).OftensaidtosubsumeHaaS.Ex:AmazonWebServices(AWS:EC2andS3),OpenStack,Eucalyptus,Rightscale,MicrosoftAzure,GoogleCloud.25II.On-demandaccess:*aaSClassificationPaaS:PlatformasaServiceYougetaccesstoflexiblecomputingandstorageinfrastructure,coupledwithasoftwareplatform(oftentightlycoupled)Ex:Google’sAppEngine(Python,Java,Go)SaaS:SoftwareasaServiceYougetaccesstosoftwareservices,whenyouneedthem.OftensaidtosubsumeSOA(ServiceOrientedArchitectures).Ex:Googledocs,MSOfficeondemand26III.Data-intensiveComputingComputation-IntensiveComputingExampleareas:MPI-based,High-performancecomputing,GridsTypicallyrunonsupercomputers(e.g.,NCSABlueWaters)Data-IntensiveTypicallystoredataatdatacentersUsecomputenodesnearbyComputenodesruncomputationservicesIndata-intensivecomputing,thefocusshiftsfromcomputationtothedata:CPUutilizationnolongerthemostimportantresourcemetric,insteadI/Ois(diskand/ornetwork)27IV.NewCloudProgrammingParadigmsEasytowriteandrunhighlyparallelprogramsinnewcloudprogrammingparadigms:Google:MapReduceandSawzallAmazon:ElasticMapReduceservice(pay-as-you-go)Google(MapReduce)Indexing:achainof24MapReducejobs~200Kjobsprocessing50PB/month(in2006)Yahoo!(Hadoop+Pig)WebMap:achainofseveralMapReducejobs300TBofdata,10Kcores,manytensofhours(~2008)Facebook(Hadoop+Hive)~300TBtotal,adding2TB/day(in2008)3Kjobsprocessing55TB/daySimilarnumbersfromothercompanies,e.g.,Yieldex,,etc.NoSQL:MySQLisanindustrystandard,butCassandrais2400timesfaster!28TwoCategoriesofCloudsCanbeeithera(i)publiccloud,or(ii)privatecloudPrivatecloudsareaccessibleonlytocompanyemployeesPubliccloudsprovideservicetoanypayingcustomerYou’restartinganewservice/company:shouldyouuseapubliccloudorpurchaseyourownprivatecloud?29SinglesiteCloud:toOutsourceorOwn?Medium-sizedorganization:wishestorunaserviceforMmonthsServicerequires128servers(1024cores)and524TBSameasUIUCCCT(CloudComputingTestbed)cloudsite(boughtin2009,nowdecommissioned)Outsource(e.g.,viaAWS):monthlycostS3costs:$0.12perGBmonth.EC2costs:$0.10perCPUhour(costsfrom2009)Storage=$0.12X524X1000~$62KTotal=Storage+CPUs=$62K+$0.10X1024X24X30~$136KOwn:monthlycostStorage~$349K/MTotal~$1555K/M+7.5K(includes1sysadmin/100nodes)using0.45:0.4:0.15splitforhardware:power:networkand3yearlifetimeofhardware30SinglesiteCloud:toOutsourceorOwn?Breakevenanalysis:morepreferabletoownif:-$349K/M<$62K(storage)-
$1555K/M+7.5K<$136K(overall)BreakevenpointsM>5.55months(storage)M>12months(overall)Asaresult StartupsusecloudsalotCloudprovidersbenefitmonetarilymostfromstorage31AcademicClouds:EmulabAcommunityresourceopentoresearchersinacademiaandindustry.Verywidelyusedbyresearcherseverywheretoday./
Acluster,withcurrently~500serversFoundedandownedbyUniversityofUtah(ledbyLateProf.JayLepreau)Asauser,youcan:GrabasetofmachinesforyourexperimentYougetroot-level(sudo)accesstothesemachinesYoucanspecifyanetworktopologyforyourclusterYoucanemulateanytopologyAllimages?Emulab32Acommunityresourceopentoresearchersinacademiaand industry/Currently,~1077nodesat~500sitesacrosstheworldFoundedatPrincetonUniversity(ledbyProf.LarryPeterson),butownedinafederatedmannerbythesitesNode:DedicatedserverthatrunscomponentsofPlanetLabservices.Site:Alocation,e
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度離職員工保密協(xié)議及競業(yè)限制合同簽訂流程規(guī)范
- 二零二五年度知識產(chǎn)權(quán)保護合伙人合作協(xié)議范本
- 法律實務案例分析題及法律理論應用題卷
- 共享平臺合作協(xié)議知識產(chǎn)權(quán)合作開發(fā)協(xié)議
- 高峰會議交流與合作備忘錄
- 油漆勞務合同油漆工用工合同
- 基于大數(shù)據(jù)的農(nóng)業(yè)現(xiàn)代化種植管理系統(tǒng)開發(fā)實踐
- 企業(yè)形象策劃及活動推廣合作協(xié)議
- 精紡織品采購合同
- 高一英語動詞時態(tài)對照分析教案
- 2025屆高考化學二輪復習:晶胞的相關性質(zhì)及計算(含解析)
- 2024年沙洲職業(yè)工學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 2024年山東鋁業(yè)職業(yè)學院高職單招數(shù)學歷年參考題庫含答案解析
- 2024年山東勞動職業(yè)技術學院高職單招語文歷年參考題庫含答案解析
- 融合智慧數(shù)據(jù)的圖書館數(shù)智服務平臺研究
- 員工外宿免責協(xié)議書(2篇)
- IT科技產(chǎn)業(yè)云計算服務平臺開發(fā)方案
- 2025年中國航天科工招聘筆試參考題庫含答案解析
- 血透室停電停水應急預案
- 4《公民的基本權(quán)利和義務》(第2課時)教學實錄-2024-2025學年道德與法治六年級上冊統(tǒng)編版
- 人教版小學數(shù)學三年級下冊第一單元《位置與方向(一)》單元測試
評論
0/150
提交評論