版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省茂名市深中學(xué)高三數(shù)學(xué)文期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.設(shè)定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若f(3)=1,且3f(x)+xf′(x)>1,則不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集為()A.(2014,+∞) B.(0,2014) C.(0,2020) D.(2020,+∞)參考答案:D【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;導(dǎo)數(shù)的運(yùn)算.【分析】令g(x)=x3f(x),判斷出g(x)在(0,+∞)遞增,原不等式轉(zhuǎn)化為g(x﹣2017)>g(3),解出即可.【解答】解:∵3f(x)+xf′(x)>1,∴3x2f(x)+x3f′(x)>x2>0,故[x3f(x)]′>0,故g(x)=x3f(x)在(0,+∞)遞增,∵(x﹣2017)3f(x﹣2017)﹣27f(3)>0,∴(x﹣2017)3f(x﹣2017)>33f(3),即g(x﹣2017)>g(3),故x﹣2017>3,解得:x>2020,故原不等式的解集是(2020,+∞),故選:D.2.在“淘淘”微信群的某次搶紅包活動(dòng)中,所發(fā)紅包被隨機(jī)的分配為2.63元,1.95元,2.26元,1.77元,0.39元共五份,每人只能搶一次,若紅包搶完時(shí),則其中小淘、小樂(lè)兩人搶到紅包金額之和不少于5元的概率是
A.
B.
C.
D.參考答案:B3.是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,右圖是據(jù)某地某日早7點(diǎn)至晚8點(diǎn)甲、乙兩個(gè)監(jiān)測(cè)點(diǎn)統(tǒng)計(jì)的數(shù)據(jù)(單位:毫克/每立方米)列出的莖葉圖,則甲、乙兩地濃度的方差較小的是
A.甲
B.乙
C.甲乙相等
D.無(wú)法確定
參考答案:A4.已知,則下面四個(gè)數(shù)中最小的是A.
B.
C.
D.參考答案:C略5.已知函數(shù),x∈R,若≥1,則x的取值范圍為(A) (B)(C) (D)參考答案:B略6.在函數(shù)的圖象上有一點(diǎn),此函數(shù)圖象與軸及直線圍成圖形(如圖陰影部分)的面積為S,則S關(guān)于t的函數(shù)關(guān)系的圖象可以是(
)A.
B.
C.
D.參考答案:C7.定義設(shè)實(shí)數(shù)滿足約束條件則的取值范圍是 (A)
(B)
(C)
(D)參考答案:B略8.對(duì)于正整數(shù)n,定義“n!!”如下:當(dāng)n為偶數(shù)時(shí),n!!=n?(n﹣2)?(n﹣4)…6?4?2;當(dāng)n為奇數(shù)時(shí),n!!=n?(n﹣2)?(n﹣4)…5?3?1;則:①?=2005!;②2004!!=21002?1002!;③2004!!的個(gè)位數(shù)是0;④2005!!的個(gè)位數(shù)是5;上述命題中,正確的命題有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)參考答案:D【考點(diǎn)】排列及排列數(shù)公式.【分析】利用定義“n!!”及其“n!”的定義即可得出.【解答】解:①?=2005!,正確;②2004!!=2004×2002×…10×8×6×4×2=21002?1002!,正確;③2004!!=2004×2002×…10×8×6×4×2的個(gè)位數(shù)是0,正確;④2005!!=2005×2003×…×9×7×5×3×1的個(gè)位數(shù)是5;上述命題中,正確的命題有4個(gè).故選:D.9.設(shè)是定義在實(shí)數(shù)集上的函數(shù),且滿足下列關(guān)系,,則是(
).
.偶函數(shù),但不是周期函數(shù)
.偶函數(shù),又是周期函數(shù).奇函數(shù),但不是周期函數(shù)
.奇函數(shù),又是周期函數(shù)參考答案:D10.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離為 A.1
B.
C.
D.2
參考答案:二、填空題:本大題共7小題,每小題4分,共28分11.閱讀右邊框圖,為了使輸出的n=5,則輸人的整數(shù)P的最小值為參考答案:8
【知識(shí)點(diǎn)】程序框圖.L1解析:程序在運(yùn)行過(guò)程中各變量的值如下表示:
是否繼續(xù)循環(huán)
S
n循環(huán)前/0
1第一圈
是
1
2第二圈
是
3
3第三圈
是
7
4第四圈
是
15
5第五圈
否故S=7時(shí),滿足條件S<pS=15時(shí),不滿足條件S<p故p的最小值為8故答案為:8【思路點(diǎn)撥】分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算變量S的值,并輸出滿足退出循環(huán)條件時(shí)的k值,模擬程序的運(yùn)行,用表格對(duì)程序運(yùn)行過(guò)程中各變量的值進(jìn)行分析,不難得到輸出結(jié)果.12.設(shè)不等式組所表示的平面區(qū)域?yàn)镸,若z=2x﹣y+2a+b(a>0,b>0)的最大值為3,則+的最小值為.參考答案:3【考點(diǎn)】簡(jiǎn)單線性規(guī)劃的應(yīng)用;簡(jiǎn)單線性規(guī)劃.【專題】計(jì)算題;規(guī)律型;數(shù)形結(jié)合;轉(zhuǎn)化思想;不等式的解法及應(yīng)用;不等式.【分析】①畫(huà)可行域;②z為目標(biāo)函數(shù)的縱截距;③畫(huà)直線z=x﹣y.平移可得直線過(guò)A或B時(shí)z有最值.得到a,b關(guān)系式,然后利用基本不等式求解表達(dá)式的最小值.【解答】解:畫(huà)不等式組所表示的平面區(qū)域?yàn)镸如圖,畫(huà)直線z=2x﹣y+2a+b,平移直線z=2x﹣y+2a+b過(guò)點(diǎn)A(1,0)時(shí)z有最大值3;則z=2+2a+b=3,解得2a+b=1,a>0,b>0,則+=(+)(2a+b)=3+≥3+2=3+2,當(dāng)且僅當(dāng)b=,2a+b=1,即a=1﹣,b=時(shí),表達(dá)式取得最小值.故答案為:3+2.【點(diǎn)評(píng)】本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,基本不等式的綜合應(yīng)用,屬于中檔題.13.已知某個(gè)幾何體的三視圖如右圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是cm3。參考答案:略14.若甲乙兩人從門課程中各選修門,則甲乙所選的課程中恰有門相同的選法有
種(用數(shù)字作答).參考答案:試題分析:由題意知,甲乙兩人從門課程中各選修門總的方法數(shù)是,其中甲乙所選課程全不相同,有;甲乙所選課程有一門相同,有甲乙所選課程有三門相同,有所以,甲乙所選的課程中恰有門相同的選法有:考點(diǎn):1.分類計(jì)數(shù)原理;2.簡(jiǎn)單組合問(wèn)題.15.若向量滿足,則實(shí)數(shù)x的取值范圍是____________.參考答案:(-3,1)【分析】根據(jù)題意計(jì)算,解得答案.【詳解】,故,解得.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積,意在考查學(xué)生的計(jì)算能力.16.已知定義在實(shí)數(shù)集R上的函數(shù)滿足=1,且的導(dǎo)數(shù)在R上恒有<,則不等式的解集為
參考答案:∪17.已知函數(shù).①當(dāng)時(shí),若,則_______;②若是上的增函數(shù),則的取值范圍是___________.參考答案:1,【考點(diǎn)】分段函數(shù),抽象函數(shù)與復(fù)合函數(shù)【試題解析】①當(dāng)時(shí),若x<1,則無(wú)實(shí)數(shù)解;
若則
②若在上是單調(diào)遞增函數(shù),
則即
令
顯然g(a)在單調(diào)遞增,且
所以的解為:
故的取值范圍是:。三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.經(jīng)市場(chǎng)調(diào)查,某商品在過(guò)去100天內(nèi)的銷售量和價(jià)格均為時(shí)間的函數(shù),且銷售量近似地滿足()。前天價(jià)格為(),后天價(jià)格為,()⑴試寫(xiě)出該種商品的日銷售額與時(shí)間的函數(shù)關(guān)系⑵求出日銷售額的最大值。參考答案:⑴⑵當(dāng)活時(shí)19.已知函數(shù)(1)p=1時(shí),求曲線y=f(x)在點(diǎn)處的切線方程;(2)求函數(shù)f(x)的極值;(3)若對(duì)任意的x>0,恒有,求實(shí)數(shù)p的取值范圍.參考答案:解:(1),曲線在點(diǎn)處的切線方程為:(2)當(dāng)時(shí),在上遞增,函數(shù)無(wú)極值;當(dāng)時(shí),上單調(diào)遞增;上單調(diào)遞減的極大值為,無(wú)極小值略20.如圖,在三棱柱中,側(cè)面底面,,,點(diǎn),分別是,的中點(diǎn).(1)證明:平面;(2)若,,求三棱錐的體積.參考答案:(1)證明:取的中點(diǎn),連接,,∵是的中點(diǎn),∴.∵是三棱柱,∴,∴,∴平面.∵是的中點(diǎn),∴,∴平面.又,∴平面平面,∴平面.(2)作與,因?yàn)槠矫娴酌?,所以平面,所以,?21.(本小題滿分12分)
已知函數(shù)其中(1)
當(dāng)時(shí),求曲線處的切線的斜率;(2)
當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間與極值。參考答案:解析:(I)解:(II)以下分兩種情況討論。(1)>,則<.當(dāng)變化時(shí),的變化情況如下表:
+0—0+
↗極大值↘極小值↗(2)<,則>,當(dāng)變化時(shí),的變化情況如下表:
+0—0+
↗極大值↘極小值↗22.(本小題滿分13分,(I)小問(wèn)6分,(II)小問(wèn)7分)某市公租房的房源位于A、B、C三個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,求該市的任4位申請(qǐng)人中:
(I)沒(méi)有人申請(qǐng)A片區(qū)房源的概率;
(II)每個(gè)片區(qū)的房源都有人申請(qǐng)的概率。參考答案:解:這是等可能性事件的概率計(jì)算問(wèn)題。
(I)解法一:所有可能的申請(qǐng)方
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年塑料包裝袋品牌授權(quán)生產(chǎn)銷售合同3篇
- 2024年度消防設(shè)備安裝與消防培訓(xùn)及檢測(cè)合同3篇
- 2024年度新能源技術(shù)研發(fā)中心工程師勞務(wù)派遣合作協(xié)議3篇
- 2024年度建筑企業(yè)資質(zhì)注銷代理合同模板3篇
- 2024年度水利工程居間合同范本6篇
- 冷凝集素病病因介紹
- 洗浴會(huì)所裝修合同范例
- 公路運(yùn)費(fèi)合同范例
- 農(nóng)村機(jī)電井維修合同范例
- 其他門窗維修合同范例
- 順豐控股財(cái)務(wù)報(bào)表分析報(bào)告
- 銀行資產(chǎn)保全業(yè)務(wù)管理辦法
- 賽碼網(wǎng)行測(cè)題題庫(kù)2024
- 土方運(yùn)輸司機(jī)合同范本
- 中國(guó)血液透析用血管通路專家共識(shí)(全文)
- 人教部編版小學(xué)語(yǔ)文六年上冊(cè)《習(xí)作:有你真好》說(shuō)課稿及教學(xué)反思共三篇
- 10S507 建筑小區(qū)埋地塑料給水管道施工
- 2024年典型事故案例警示教育手冊(cè)15例
- DL∕T 1882-2018 驗(yàn)電器用工頻高壓發(fā)生器
- DL∕T 802.7-2023 電力電纜導(dǎo)管技術(shù)條件 第7部分:非開(kāi)挖用塑料電纜導(dǎo)管
- 品味化學(xué)電源發(fā)展史
評(píng)論
0/150
提交評(píng)論