2024屆浙江省嘉興市第五高級(jí)中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
2024屆浙江省嘉興市第五高級(jí)中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
2024屆浙江省嘉興市第五高級(jí)中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
2024屆浙江省嘉興市第五高級(jí)中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
2024屆浙江省嘉興市第五高級(jí)中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省嘉興市第五高級(jí)中學(xué)高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.以下兩個(gè)圖表是2019年初的4個(gè)月我國四大城市的居民消費(fèi)價(jià)格指數(shù)(上一年同月)變化圖表,則以下說法錯(cuò)誤的是()(注:圖表一每個(gè)城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個(gè)月份的條形圖從左到右四個(gè)城市依次是北京、天津、上海、重慶)A.3月份四個(gè)城市之間的居民消費(fèi)價(jià)格指數(shù)與其它月份相比增長幅度較為平均B.4月份僅有三個(gè)城市居民消費(fèi)價(jià)格指數(shù)超過102C.四個(gè)月的數(shù)據(jù)顯示北京市的居民消費(fèi)價(jià)格指數(shù)增長幅度波動(dòng)較小D.僅有天津市從年初開始居民消費(fèi)價(jià)格指數(shù)的增長呈上升趨勢2.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號(hào)連接)為()A. B.C. D.3.設(shè)且,則下列不等式成立的是()A. B. C. D.4.已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件6.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測呈陽性的概率均為()且相互獨(dú)立,該家庭至少檢測了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則()A. B. C. D.7.已知橢圓的左、右焦點(diǎn)分別為、,過點(diǎn)的直線與橢圓交于、兩點(diǎn).若的內(nèi)切圓與線段在其中點(diǎn)處相切,與相切于點(diǎn),則橢圓的離心率為()A. B. C. D.8.已知中,角、所對(duì)的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件9.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.設(shè),則()A. B. C. D.11.已知,滿足約束條件,則的最大值為A. B. C. D.12.已知函數(shù),則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.14.已知直線與圓心為的圓相交于兩點(diǎn),且,則實(shí)數(shù)的值為_________.15.已知全集,集合,則______.16.在長方體中,,,,為的中點(diǎn),則點(diǎn)到平面的距離是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形中,,,,沿對(duì)角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.19.(12分)已知圓M:及定點(diǎn),點(diǎn)A是圓M上的動(dòng)點(diǎn),點(diǎn)B在上,點(diǎn)G在上,且滿足,,點(diǎn)G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動(dòng)直線l與曲線C有且只有一個(gè)公共點(diǎn),與直線和分別交于P、Q兩點(diǎn).當(dāng)時(shí),求(O為坐標(biāo)原點(diǎn))面積的取值范圍.20.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對(duì)邊分別為,且,求的面積.21.(12分)已知數(shù)列的前n項(xiàng)和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)若數(shù)列中去掉數(shù)列的項(xiàng)后余下的項(xiàng)按原順序組成數(shù)列,求的值.22.(10分)已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列中,,,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

采用逐一驗(yàn)證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個(gè)城市的居民消費(fèi)價(jià)格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費(fèi)價(jià)格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個(gè)月的居民消費(fèi)價(jià)格指數(shù)相差不大D錯(cuò)誤,從圖表一可知上海市也是從年初開始居民消費(fèi)價(jià)格指數(shù)的增長呈上升趨勢故選:D【點(diǎn)睛】本題考查圖表的認(rèn)識(shí),審清題意,細(xì)心觀察,屬基礎(chǔ)題.2、A【解析】因?yàn)?,所以,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)?,因此,選A.點(diǎn)睛:函數(shù)對(duì)稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對(duì)稱);(2)函數(shù)關(guān)于點(diǎn)對(duì)稱,函數(shù)關(guān)于直線對(duì)稱,(3)函數(shù)周期為T,則3、A【解析】項(xiàng),由得到,則,故項(xiàng)正確;項(xiàng),當(dāng)時(shí),該不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤.綜上所述,故選.4、A【解析】

利用復(fù)數(shù)除法運(yùn)算化簡,由此求得對(duì)應(yīng)點(diǎn)所在象限.【詳解】依題意,對(duì)應(yīng)點(diǎn)為,在第一象限.故選A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.5、A【解析】

根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題6、A【解析】

根據(jù)題意分別求出事件A:檢測5個(gè)人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個(gè)人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測5個(gè)人確定為“感染高危戶”,事件B:檢測6個(gè)人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時(shí)取等號(hào),即.故選:A.【點(diǎn)睛】本題主要考查概率的計(jì)算,涉及相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)建模能力,屬于較難題.7、D【解析】

可設(shè)的內(nèi)切圓的圓心為,設(shè),,可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值.【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點(diǎn),且為中點(diǎn),,設(shè),,則,且有,解得,,設(shè),,設(shè)圓切于點(diǎn),則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點(diǎn)睛】本題考查橢圓的定義和性質(zhì),注意運(yùn)用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運(yùn)算能力,屬于中檔題.8、D【解析】

由大邊對(duì)大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對(duì)的邊分別是、,由大邊對(duì)大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點(diǎn)睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎(chǔ)知識(shí),考查邏輯推理能力,是基礎(chǔ)題.9、B【解析】

構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.10、D【解析】

結(jié)合指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點(diǎn)睛】本題考查了幾個(gè)數(shù)的大小比較,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.11、D【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.12、C【解析】

利用三角恒等變換化簡三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

按照個(gè)位上的9元的支付情況分類,三個(gè)數(shù)位上的錢數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類做到不重不漏,分步做到步驟完整.14、0或6【解析】

計(jì)算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點(diǎn)睛】本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力。15、【解析】

根據(jù)題意可得出,然后進(jìn)行補(bǔ)集的運(yùn)算即可.【詳解】根據(jù)題意知,,,,.故答案為:.【點(diǎn)睛】本題考查列舉法的定義、全集的定義、補(bǔ)集的運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】

利用等體積法求解點(diǎn)到平面的距離【詳解】由題在長方體中,,,所以,所以,設(shè)點(diǎn)到平面的距離為,解得故答案為:【點(diǎn)睛】此題考查求點(diǎn)到平面的距離,通過在三棱錐中利用等體積法求解,關(guān)鍵在于合理變換三棱錐的頂點(diǎn).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)取的中點(diǎn),連.可證得,,于是可得平面,進(jìn)而可得結(jié)論成立.(2)運(yùn)用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點(diǎn),連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點(diǎn),連結(jié),∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設(shè),則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則在直角三角形中,可得,作于,則有平面幾何知識(shí)可得,∴.又可得,.∴,.設(shè)平面的一個(gè)法向量為,由,得,令,則得.又,設(shè)直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點(diǎn)睛】利用向量法求解直線和平面所成角時(shí),關(guān)鍵點(diǎn)是恰當(dāng)建立空間直角坐標(biāo)系,確定斜線的方向向量和平面的法向量.解題時(shí)通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補(bǔ)角,取其余角就是斜線與平面所成的角.求解時(shí)注意向量的夾角與線面角間的關(guān)系.18、(1)見解析(2)【解析】

(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題考查線面平行,建系通過坐標(biāo)求二面角等知識(shí)點(diǎn),屬于一般性題目.19、(1);(2).【解析】

(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達(dá)定理化簡即可求范圍.【詳解】(1)為的中點(diǎn),且是線段的中垂線,,又,∴點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,設(shè)橢圓方程為(),則,,,所以曲線C的方程為.(2)設(shè)直線l:(),由消去y,可得.因?yàn)橹本€l總與橢圓C有且只有一個(gè)公共點(diǎn),所以,.①又由可得;同理可得.由原點(diǎn)O到直線的距離為和,可得.②將①代入②得,當(dāng)時(shí),,綜上,面積的取值范圍是.【點(diǎn)睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關(guān)系從而判斷軌跡,直線與曲線相交一般聯(lián)立設(shè)而不求韋達(dá)定理進(jìn)行求解即可,屬于一般性題目.20、(1);(2)或【解析】

(1)利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當(dāng)時(shí),由余弦定理得即,解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論