新疆維吾爾自治區(qū)托克遜縣第二中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
新疆維吾爾自治區(qū)托克遜縣第二中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
新疆維吾爾自治區(qū)托克遜縣第二中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
新疆維吾爾自治區(qū)托克遜縣第二中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
新疆維吾爾自治區(qū)托克遜縣第二中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

新疆維吾爾自治區(qū)托克遜縣第二中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)全集U=R,集合,則()A. B. C. D.2.已知函數(shù),下列結(jié)論不正確的是()A.的圖像關(guān)于點(diǎn)中心對(duì)稱 B.既是奇函數(shù),又是周期函數(shù)C.的圖像關(guān)于直線對(duì)稱 D.的最大值是3.把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實(shí)數(shù)的最小值是()A. B. C. D.4.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽(yáng)馬體積的最大值為時(shí),塹堵的外接球的體積為()A. B. C. D.5.函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為()A. B. C.2 D.6.若直線的傾斜角為,則的值為()A. B. C. D.7.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.8.已知全集,則集合的子集個(gè)數(shù)為()A. B. C. D.9.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.10.設(shè)且,則下列不等式成立的是()A. B. C. D.11.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級(jí)政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級(jí)要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個(gè)不同的住戶屬在鄂返鄉(xiāng)住戶,負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個(gè)住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種12.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左焦點(diǎn)為,、為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),的中點(diǎn)為,的中點(diǎn)為,的中點(diǎn)為,若,且直線的斜率為,則__________,雙曲線的離心率為__________.14.在中,角,,的對(duì)邊分別為,,.若;且,則周長(zhǎng)的范圍為__________.15.若復(fù)數(shù)滿足,其中是虛數(shù)單位,是的共軛復(fù)數(shù),則________.16.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號(hào)是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表:并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出人,進(jìn)行體育鍛煉體會(huì)交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63518.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:20.(12分)已知橢圓的焦點(diǎn)為,,離心率為,點(diǎn)P為橢圓C上一動(dòng)點(diǎn),且的面積最大值為,O為坐標(biāo)原點(diǎn).(1)求橢圓C的方程;(2)設(shè)點(diǎn),為橢圓C上的兩個(gè)動(dòng)點(diǎn),當(dāng)為多少時(shí),點(diǎn)O到直線MN的距離為定值.21.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.22.(10分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計(jì)算即可.【詳解】,,則,故選:A.【點(diǎn)睛】本題考查集合的交集和補(bǔ)集的運(yùn)算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.2、D【解析】

通過三角函數(shù)的對(duì)稱性以及周期性,函數(shù)的最值判斷選項(xiàng)的正誤即可得到結(jié)果.【詳解】解:,正確;,為奇函數(shù),周期函數(shù),正確;,正確;D:,令,則,,,,則時(shí),或時(shí),即在上單調(diào)遞增,在和上單調(diào)遞減;且,,,故D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查三角函數(shù)周期性和對(duì)稱性的判斷,利用導(dǎo)數(shù)判斷函數(shù)最值,屬于中檔題.3、A【解析】

先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對(duì)稱性可求實(shí)數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)解析式為,故.令,,解得,.因?yàn)闉榕己瘮?shù),故直線為其圖象的對(duì)稱軸,令,,故,,因?yàn)?,故,?dāng)時(shí),.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對(duì)自變量做加減,比如把的圖象向右平移1個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對(duì)稱軸,則有,本題屬于中檔題.4、B【解析】

利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又陽(yáng)馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國(guó)傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).5、C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,,,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.6、B【解析】

根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡(jiǎn),再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.7、D【解析】

由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯(cuò)點(diǎn)是忽略方程表示雙曲線對(duì)于的范圍的要求.8、C【解析】

先求B.再求,求得則子集個(gè)數(shù)可求【詳解】由題=,則集合,故其子集個(gè)數(shù)為故選C【點(diǎn)睛】此題考查了交、并、補(bǔ)集的混合運(yùn)算及子集個(gè)數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題9、D【解析】

根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.【點(diǎn)睛】本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.10、A【解析】項(xiàng),由得到,則,故項(xiàng)正確;項(xiàng),當(dāng)時(shí),該不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤.綜上所述,故選.11、C【解析】

先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個(gè)不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點(diǎn)睛】此題考查的是排列組合知識(shí),解此類題時(shí)一般先組合再排列,屬于基礎(chǔ)題.12、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),,根據(jù)中點(diǎn)坐標(biāo)公式可得坐標(biāo),利用可得到點(diǎn)坐標(biāo)所滿足的方程,結(jié)合直線斜率可求得,進(jìn)而求得;將點(diǎn)坐標(biāo)代入雙曲線方程,結(jié)合焦點(diǎn)坐標(biāo)可求得,進(jìn)而得到離心率.【詳解】左焦點(diǎn)為,雙曲線的半焦距.設(shè),,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結(jié)合可解得:,,離心率.故答案為:;.【點(diǎn)睛】本題考查直線與雙曲線的綜合應(yīng)用問題,涉及到直線截雙曲線所得線段長(zhǎng)度的求解、雙曲線離心率的求解問題;關(guān)鍵是能夠通過設(shè)點(diǎn)的方式,結(jié)合直線斜率、垂直關(guān)系、點(diǎn)在雙曲線上來構(gòu)造方程組求得所需變量的值.14、【解析】

先求角,再用余弦定理找到邊的關(guān)系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長(zhǎng)故答案為:【點(diǎn)睛】考查正余弦定理、基本不等式的應(yīng)用以及三條線段構(gòu)成三角形的條件;基礎(chǔ)題.15、【解析】

設(shè),代入已知條件進(jìn)行化簡(jiǎn),根據(jù)復(fù)數(shù)相等的條件,求得的值.【詳解】設(shè),由,得,所以,所以.故答案為:【點(diǎn)睛】本小題主要考查共軛復(fù)數(shù),考查復(fù)數(shù)相等的條件,屬于基礎(chǔ)題.16、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯(cuò)誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯(cuò)誤;因?yàn)椤叭魓y=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯(cuò)誤.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解析】

(1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總?cè)藬?shù)及女生人數(shù)得男生人數(shù),由表格得達(dá)標(biāo)人數(shù),從而得男生中達(dá)標(biāo)人數(shù),這樣不達(dá)標(biāo)人數(shù)隨之而得,然后計(jì)算可得結(jié)論;(2)由達(dá)標(biāo)人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,1,2,分別計(jì)算概率得分布列,再由期望公式可計(jì)算出期望.【詳解】(1)列出列聯(lián)表,,所以在犯錯(cuò)誤的概率不超過的前提下能判斷“課外體育達(dá)標(biāo)”與性別有關(guān).(2)(i)在“鍛煉達(dá)標(biāo)”的學(xué)生中,男女生人數(shù)比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,人中女生的人數(shù)為,則的可能值為,,,則,,,可得的分布列為:可得數(shù)學(xué)期望.【點(diǎn)睛】本題考查列聯(lián)表與獨(dú)立性檢驗(yàn),考查分層抽樣,隨機(jī)變量的概率分布列和期望.主要考查學(xué)生的數(shù)據(jù)處理能力,運(yùn)算求解能力,屬于中檔題.18、(1)見證明;(2)【解析】

(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.19、(1);(2)見解析.【解析】

(1)將問題轉(zhuǎn)化為對(duì)任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對(duì)任意恒成立等價(jià)于對(duì)任意恒成立,令,,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;有最大值,.(2)證明:由(1)知,當(dāng)時(shí),即,,,令,則,令,則,在上是增函數(shù),又,當(dāng)時(shí),;當(dāng)時(shí),,在上是減函數(shù),在上是增函數(shù),,即,.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決恒成立問題,考查了利用導(dǎo)數(shù)證明不等式,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.20、(1);(2)當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【解析】

(1)的面積最大時(shí),是短軸端點(diǎn),由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時(shí),設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達(dá)定理得,注意,一是計(jì)算,二是計(jì)算原點(diǎn)到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因?yàn)樵跈E圓上,當(dāng)是短軸端點(diǎn)時(shí),到軸距離最大,此時(shí)面積最大,所以,由,解得,所以橢圓方程為.(2)在時(shí),設(shè)直線方程為,原點(diǎn)到此直線的距離為,即,由,得,,,所以,,,所以當(dāng)時(shí),,,為常數(shù).若,則,,,,,綜上所述,當(dāng)=0時(shí),點(diǎn)O到直線MN的距離為定值.【點(diǎn)睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運(yùn)算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時(shí)常用此法通過韋達(dá)定理聯(lián)系已知式與待求式.21、(1);(2)見解析.【解析】

(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項(xiàng)公式計(jì)算即可;(2)先求出數(shù)列的通項(xiàng),再利用裂項(xiàng)相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為首項(xiàng)3為公差的等差數(shù)列,所以,即.(2)因?yàn)?,則,所以,又是遞增數(shù)列,所以,綜上,.【點(diǎn)睛】本題考查由遞推公式求數(shù)列通項(xiàng)公式、裂項(xiàng)相消法求數(shù)列的和,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.22、(Ⅰ)極小值,極大值;(Ⅱ)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論