


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一種基于Spark的圖像聚類并行化算法Title:ParallelizedImageClusteringAlgorithmbasedonSparkAbstract:Imageclusteringplaysanimportantroleinvariouscomputervisiontaskssuchasimagesearch,objectrecognition,andrecommendationsystems.Withtheexponentialgrowthofimagedata,theneedforefficientandscalableclusteringalgorithmshasbecomeessential.Inthispaper,weproposeaparallelizedimageclusteringalgorithmbasedonSpark,apopulardistributedcomputingframework,toaddressthechallengesposedbybigimagedatasets.TheproposedalgorithmleveragesthedistributedprocessingcapabilitiesofSparktoacceleratetheclusteringprocessandimprovescalability.1.IntroductionImageclusteringistheprocessofgroupingsimilarimagestogetherbasedontheirvisualcontent.Traditionalimageclusteringalgorithmsoftenfacesignificantchallengeswhendealingwithlarge-scaleimagedatasetsduetothecomputationalburdenandmemorylimitations.Toovercometheselimitations,parallelizedanddistributedcomputingframeworkshavebeenemployed.OurproposedalgorithmleveragesthecapabilitiesofSpark,adistributedcomputingframework,toparallelizetheclusteringprocessandachievefasterandmorescalableimageclustering.2.RelatedWorkThissectionprovidesanoverviewoftheexistingimageclusteringalgorithmsandtheirparallelizationtechniques.VariousalgorithmssuchasK-means,DBSCAN,andSpectralClusteringhavebeenusedforimageclustering.Additionally,parallelizationtechniquesusingMapReduceandSparkhavebeenproposedtoimprovetheefficiencyofthesealgorithms.Wediscussthelimitationsoftheseexistingapproachesandhighlighttheadvantagesofourproposedalgorithm.3.ProposedAlgorithmOurparallelizedimageclusteringalgorithmbasedonSparkconsistsofseveralstages:datapreparation,featureextraction,clustering,andresultevaluation.Inthedatapreparationstage,wepreprocesstheimagedatasetandgenerateadistributeddataset(RDD)inSpark.Thefeatureextractionstageinvolvesextractingmeaningfulvisualfeaturesfromimages,suchascolorhistogramsordeeplearningfeatures.TheextractionprocessisparallelizedusingSpark'sparalleloperationstoefficientlyprocessthelarge-scaleimagedataset.Afterfeatureextraction,weapplyaclusteringalgorithm,suchasK-meansorSpectralClustering,onthedistributeddataset.TheclusteringalgorithmisparallelizedusingSpark'sclustercomputingcapabilities,allowingforefficientdistributionofclustercentroidsandparallelcalculationofclusterassignments.Parallelizationenablesthealgorithmtohandlelarge-scaleimagedatasetsandreducecomputationtimesignificantly.Finally,weevaluatetheclusteringresultsusingvariousmetricssuchasclusterpurity,clusteringaccuracy,andintra-clustersimilarity.TheevaluationprocessisparallelizedusingSpark'sdistributedcomputingcapabilities,allowingforefficientevaluationoflarge-scaleimageclusteringresults.4.ExperimentalEvaluationToassesstheperformanceofourparallelizedimageclusteringalgorithm,weconductexperimentsonpopularimagedatasetssuchasMNISTandCIFAR-10.Wecomparetheperformanceofouralgorithmagainstexistingsequentialclusteringalgorithms,aswellasotherparallelizationtechniquesusingMapReduce.Theexperimentalevaluationincludesmetricssuchasruntime,scalability,andclusteringquality.5.ResultsandDiscussionTheexperimentalresultsdemonstratethatourparallelizedimageclusteringalgorithmbasedonSparkoutperformsexistingsequentialclusteringalgorithmsandachievesbetterscalability.Thealgorithmshowssignificantimprovementsintermsofruntime,enablingfasterprocessingoflarge-scaleimagedatasets.Furthermore,theclusteringqualityevaluationindicatesthatouralgorithmproducescomparableorevenbetterclusteringresultscomparedtoexistingapproaches.6.ConclusionInthispaper,weproposeaparallelizedimageclusteringalgorithmbasedonSpark,adistributedcomputingframework,toaddressthechallengesposedbybigimagedatasets.OuralgorithmleveragesSpark'sdistributedprocessingcapabilitiestoparallelizetheclusteringprocessandachievefasterandmorescalableimageclustering.Theexperimentalresultsvalidatetheeffectivenessandefficiencyofouralgorithm,mak
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 解除共同投資協(xié)議書
- 租賃店鋪續(xù)約協(xié)議書
- 沙子水泥進(jìn)廠協(xié)議書
- 物業(yè)提前終止協(xié)議書
- 婚姻介紹聘請(qǐng)協(xié)議書
- 學(xué)校配餐協(xié)議書范本
- 免責(zé)承包協(xié)議書范本
- 培訓(xùn)機(jī)構(gòu)投資協(xié)議書
- 交友平臺(tái)保密協(xié)議書
- 農(nóng)村租地蓋房協(xié)議書
- 幼兒園安全制度
- 2025屆蘇錫常鎮(zhèn)四市高三二模試題英語試題試卷含解析
- 廣東省廣州市花都區(qū)2022-2023學(xué)年二年級(jí)下學(xué)期數(shù)學(xué)期中檢測(cè)練習(xí)卷
- 探討DeepSeek對(duì)出版業(yè)的數(shù)字化轉(zhuǎn)型支持
- 管理學(xué)基礎(chǔ)-形考任務(wù)二-國開-參考資料
- 2025年中央一號(hào)文件參考試題庫100題(含答案)
- 物資出入庫管理制度范本
- 世界地圖矢量圖和各國國旗 world map and flags
- 外科主治醫(yī)師資格考試(專業(yè)代碼317)題庫
- 2025-2030年中國PC鋼棒行業(yè)發(fā)展現(xiàn)狀及投資前景分析報(bào)告
- 2023-2024學(xué)年天津市和平區(qū)八年級(jí)(下)期末數(shù)學(xué)試卷(含答案)
評(píng)論
0/150
提交評(píng)論