版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣東省東莞市寮步宏偉中學中考考前最后一卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知直線,點E,F(xiàn)分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°2.如圖是二次函數(shù)的圖象,有下面四個結論:;;;,其中正確的結論是
A. B. C. D.3.若關于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-14.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.5.在直角坐標系中,已知點P(3,4),現(xiàn)將點P作如下變換:①將點P先向左平移4個單位,再向下平移3個單位得到點P1;②作點P關于y軸的對稱點P2;③將點P繞原點O按逆時針方向旋轉90°得到點P3,則P1,P2,P3的坐標分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)6.根據(jù)中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發(fā)送旅客3.82億人次.3.82億用科學記數(shù)法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10107.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機摸出一個球,摸出的球是紅球的概率是()A. B. C. D.8.下列各式中的變形,錯誤的是(()A.2-3x=-23x B.-b9.如圖,該圖形經過折疊可以圍成一個正方體,折好以后與“靜”字相對的字是()A.著 B.沉 C.應 D.冷10.拋物線經過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在下列條件中,能夠判定一個四邊形是平行四邊形的是()A.一組對邊平行,另一組對邊相等B.一組對邊相等,一組對角相等C.一組對邊平行,一條對角線平分另一條對角線D.一組對邊相等,一條對角線平分另一條對角線12.如圖,直線m∥n,直角三角板ABC的頂點A在直線m上,則∠α的余角等于()A.19° B.38° C.42° D.52°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.2018年貴州省公務員、人民警察、基層培養(yǎng)項目和選調生報名人數(shù)約40.2萬人,40.2萬人用科學記數(shù)法表示為_____人.14.定義:直線l1與l2相交于點O,對于平面內任意一點M,點M到直線l1,l2的距離分別為p、q,則稱有序實數(shù)對(p,q)是點M的“距離坐標”.根據(jù)上述定義,“距離坐標”是(1,2)的點的個數(shù)共有______個.15.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.16.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.17.受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展.預計達州市2018年快遞業(yè)務量將達到5.5億件,數(shù)據(jù)5.5億用科學記數(shù)法表示為_____.18.請你算一算:如果每人每天節(jié)約1粒大米,全國13億人口一天就能節(jié)約_____千克大米!(結果用科學記數(shù)法表示,已知1克大米約52粒)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F(xiàn)到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結果保留根號)20.(6分)甲、乙兩家商場以同樣價格出售相同的商品,在同一促銷期間兩家商場都讓利酬賓,讓利方式如下:甲商場所有商品都按原價的8.5折出售,乙商場只對一次購物中超過200元后的價格部分按原價的7.5折出售.某顧客打算在促銷期間到這兩家商場中的一家去購物,設該顧客在一次購物中的購物金額的原價為x(x>0)元,讓利后的購物金額為y元.(1)分別就甲、乙兩家商場寫出y關于x的函數(shù)解析式;(2)該顧客應如何選擇這兩家商場去購物會更省錢?并說明理由.21.(6分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.22.(8分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區(qū)不斷推進“園林城市”建設,今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數(shù)繪制成扇形統(tǒng)計圖,將四類花苗的成活株數(shù)繪制成條形統(tǒng)圖.經統(tǒng)計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據(jù)圖表中的信息解答下列問題:扇形統(tǒng)計圖中玉蘭所對的圓心角為,并補全條形統(tǒng)計圖;該區(qū)今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.23.(8分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結果提前5天完成任務,原計劃每天種多少棵樹?24.(10分)如圖是8×8的正方形網(wǎng)格,A、B兩點均在格點(即小正方形的頂點)上,試在下面三個圖中,分別畫出一個以A,B,C,D為頂點的格點菱形(包括正方形),要求所畫的三個菱形互不全等.25.(10分)已知拋物線y=﹣x2﹣4x+c經過點A(2,0).(1)求拋物線的解析式和頂點坐標;(2)若點B(m,n)是拋物線上的一動點,點B關于原點的對稱點為C.①若B、C都在拋物線上,求m的值;②若點C在第四象限,當AC2的值最小時,求m的值.26.(12分)某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質及其厚度等暫忽略不計).27.(12分)某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經研究,按圖所示的項目和權數(shù)對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結合以上信息,回答下列問題:求服裝項目的權數(shù)及普通話項目對應扇形的圓心角大??;求李明在選拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);根據(jù)你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)平行線的性質,可得的度數(shù),再根據(jù)以及平行線的性質,即可得出的度數(shù).【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.2、D【解析】
根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關系,注意用數(shù)形結合的思想解決問題。3、C【解析】試題分析:由題意可得根的判別式,即可得到關于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數(shù)根;當時,方程的兩個相等的實數(shù)根;當時,方程沒有實數(shù)根.4、A【解析】
由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質,屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關系是解題關鍵.5、D【解析】
把點P的橫坐標減4,縱坐標減3可得P1的坐標;讓點P的縱坐標不變,橫坐標為原料坐標的相反數(shù)可得P2的坐標;讓點P的縱坐標的相反數(shù)為P3的橫坐標,橫坐標為P3的縱坐標即可.【詳解】∵點P(3,4),將點P先向左平移4個單位,再向下平移3個單位得到點P1,∴P1的坐標為(﹣1,1).∵點P關于y軸的對稱點是P2,∴P2(﹣3,4).∵將點P繞原點O按逆時針方向旋轉90°得到點P3,∴P3(﹣4,3).故選D.【點睛】本題考查了坐標與圖形的變化;用到的知識點為:左右平移只改變點的橫坐標,左減右加,上下平移只改變點的縱坐標,上加下減;兩點關于y軸對稱,縱坐標不變,橫坐標互為相反數(shù);(a,b)繞原點O按逆時針方向旋轉90°得到的點的坐標為(﹣b,a).6、B【解析】
根據(jù)題目中的數(shù)據(jù)可以用科學記數(shù)法表示出來,本題得以解決.【詳解】解:3.82億=3.82×108,故選B.【點睛】本題考查科學記數(shù)法-表示較大的數(shù),解答本題的關鍵是明確科學記數(shù)法的表示方法.7、B【解析】袋中一共7個球,摸到的球有7種可能,而且機會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.8、D【解析】
根據(jù)分式的分子分母都乘以(或除以)同一個不為零的數(shù)(整式),分式的值不變,可得答案.【詳解】A、2-3B、分子、分母同時乘以﹣1,分式的值不發(fā)生變化,故B正確;C、分子、分母同時乘以3,分式的值不發(fā)生變化,故C正確;D、yx≠y故選:D.【點睛】本題考查了分式的基本性質,分式的分子分母都乘以(或除以)同一個不為零的數(shù)(整式),分式的值不變.9、A【解析】
正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,據(jù)此作答【詳解】這是一個正方體的平面展開圖,共有六個面,其中面“沉”與面“考”相對,面“著”與面“靜”相對,“冷”與面“應”相對.故選:A【點睛】本題主要考查了利用正方體及其表面展開圖的特點解題,明確正方體的展開圖的特征是解決此題的關鍵10、A【解析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結論.【詳解】∵二次函數(shù)圖象只經過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結合解決問題是解題的關鍵.11、C【解析】A、錯誤.這個四邊形有可能是等腰梯形.B、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.C、正確.可以利用三角形全等證明平行的一組對邊相等.故是平行四邊形.D、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.故選C.12、D【解析】試題分析:過C作CD∥直線m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,則∠a的余角是52°.故選D.考點:平行線的性質;余角和補角.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4.02×1.【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.14、4【解析】
根據(jù)“距離坐標”和平面直角坐標系的定義分別寫出各點即可.【詳解】距離坐標是(1,2)的點有(1,2),(-1,2),(-1,-2),(1,-2)共四個,所以答案填寫4.【點睛】本題考查了點的坐標,理解題意中距離坐標是解題的關鍵.15、1【解析】
根據(jù)等邊三角形的性質可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質,等邊三角形的性質,熟練運用全等三角形的判定是本題的關鍵.16、4π【解析】根據(jù)扇形的面積公式可得:扇形AOB的面積為,故答案為4π.17、5.5×1.【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.18、2.5×1【解析】
先根據(jù)有理數(shù)的除法求出節(jié)約大米的千克數(shù),再用科學計數(shù)法表示,對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【點睛】本題考查了有理數(shù)的除法和正整數(shù)指數(shù)科學計數(shù)法,根據(jù)科學計算法的要求,正確確定出a和n的值是解答本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【解析】
過點A作,垂足為G,利用三角函數(shù)求出CG,從而求出GD,繼而求出CD.連接FD并延長與BA的延長線交于點H,利用三角函數(shù)求出CH,由圖得出EH,再利用三角函數(shù)值求出EF.【詳解】過點A作,垂足為G.則,在中,,由題意,得,∴,連接FD并延長與BA的延長線交于點H.由題意,得.在中,,∴.在中,.答:支角鋼CD的長為45cm,EF的長為.考點:三角函數(shù)的應用20、(1)y1=0.85x,y2=0.75x+50(x>200),y2=x(0≤x≤200);(2)x>500時,到乙商場購物會更省錢,x=500時,到兩家商場去購物花費一樣,當x<500時,到甲商場購物會更省錢.【解析】
(1)根據(jù)單價乘以數(shù)量,可得函數(shù)解析式;(2)分類討論,根據(jù)消費的多少,可得不等式,根據(jù)解不等式,可得答案.【詳解】(1)甲商場寫出y關于x的函數(shù)解析式y(tǒng)1=0.85x,乙商場寫出y關于x的函數(shù)解析式y(tǒng)2=200+(x﹣200)×0.75=0.75x+50(x>200),即y2=x(0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,解得x>500,即當x>500時,到乙商場購物會更省錢;由y1=y2得0.85x=0.75x+50,即x=500時,到兩家商場去購物花費一樣;由y1<y2,得0.85x<0.75x+500,解得x<500,即當x<500時,到甲商場購物會更省錢;綜上所述:x>500時,到乙商場購物會更省錢,x=500時,到兩家商場去購物花費一樣,當x<500時,到甲商場購物會更省錢.【點睛】本題考查了一次函數(shù)的應用,分類討論是解題關鍵.21、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】
(1)由點A、B坐標利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設點P的坐標為(x,y)知x是方程x2-3x+1=-x+1的一個解.解之求得x的值即可得出答案;(3)先求出點D坐標為(6,1),設P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當1<m<6時,由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結合AQ∥DM可得答案.②當m>6時,同理可得.【詳解】解:(1)將點A(2,0)和點B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點B作BG⊥CA,交CA的延長線于點G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點B作BH⊥CD于點H,交CP于點K,連接AK.易得四邊形OBHC是正方形.應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點K(1,),設直線CK的解析式為y=hx+1,將點K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設點P的坐標為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點P的坐標為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當1<m<6時,DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當m>6時,同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質、平行四邊形的判定與性質及勾股定理、三角函數(shù)等知識點.22、(1)72°,見解析;(2)7280;(3)16【解析】
(1)根據(jù)題意列式計算,補全條形統(tǒng)計圖即可;(2)根據(jù)題意列式計算即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出選到成活率較高的兩類樹苗的情況數(shù),即可求出所求的概率.【詳解】(1)扇形統(tǒng)計圖中玉蘭所對的圓心角為360°×(1-40%-15%-25%)=72°月季的株數(shù)為2000×90%-380-422-270=728(株),補全條形統(tǒng)計圖如圖所示:(2)月季的成活率為728所以月季成活株數(shù)為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率較高的兩類花苗有2種.∴P(恰好選到成活率較高的兩類花苗)=【點睛】此題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖的應用,根據(jù)統(tǒng)計圖得出正確信息是解題關鍵.23、原計劃每天種樹40棵.【解析】
設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據(jù)實際完成的天數(shù)比計劃少5天為等量關系建立方程求出其解即可.【詳解】設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.24、見解析【解析】
根據(jù)菱形的四條邊都相等,兩條對角線互相垂直平分,可以根據(jù)正方形的四邊垂直,將小正方形的邊作為對角線畫菱形;也可以畫出以AB為邊長的正方形,據(jù)此相信你可以畫出圖形了,注意:本題答案不唯一.【詳解】如圖為畫出的菱形:【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法;解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.本題掌握菱形的定義與性質是解題的關鍵.25、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點坐標為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據(jù)拋物線的解析式求得拋物線的頂點坐標即可;(2)①由B(m,n)在拋物線上可得﹣m2﹣4m+12=n,再由點B關于原點的對稱點為C,可得點C的坐標為(﹣m,﹣n),又因C落在拋物線上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知點C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由拋物線頂點坐標為(﹣2,16),即可得0<n≤16,因為點B在拋物線上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以當n=時,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可確定m的值.詳解:(1)∵拋物線y=﹣x2﹣4x+c經過點A(2,0),∴﹣4﹣8+c=0,即c=12,∴拋物線解析式為y=﹣x2﹣4x+12=﹣(x+2)2+16,則頂點坐標為(﹣2,16);(2)①由B(m,n)在拋物線上可得:﹣m2﹣4m+12=n,∵點B關于原點的對稱點為C,∴C(﹣m,﹣n),∵C落在拋物線上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個性化視頻制作委托合同書(2024年版)版B版
- 2025年環(huán)保型打印紙張品研發(fā)與認證合同4篇
- 2025年度文化創(chuàng)意產業(yè)承包經營合同賠償與創(chuàng)意成果轉化3篇
- 二零二五版房產維修基金管理合同3篇
- 2025年綠色建筑彩板房采購協(xié)議3篇
- 2025年度商業(yè)地產項目租賃協(xié)議范本4篇
- 二零二五年度美容師客戶滿意度調查與反饋協(xié)議4篇
- 2024年銷售合同風險評估3篇
- 2025版合伙企業(yè)個人退伙權益保障協(xié)議書3篇
- 2025年度數(shù)據(jù)中心基礎設施建設承包協(xié)議8篇
- 2025年度公務車輛私人使用管理與責任協(xié)議書3篇
- 售后工程師述職報告
- 綠化養(yǎng)護難點要點分析及技術措施
- 2024年河北省高考歷史試卷(含答案解析)
- 車位款抵扣工程款合同
- 小學六年級數(shù)學奧數(shù)題100題附答案(完整版)
- 高中綜評項目活動設計范文
- 英漢互譯單詞練習打印紙
- 2023湖北武漢華中科技大學招聘實驗技術人員24人筆試參考題庫(共500題)答案詳解版
- 一氯二氟甲烷安全技術說明書MSDS
- 物流簽收回執(zhí)單
評論
0/150
提交評論