版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆云南省昆明市四校聯(lián)考中考數(shù)學(xué)押題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,⊙O的半徑OC與弦AB交于點D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分2.計算的結(jié)果是()A.1 B.-1 C. D.3.如圖,將△ABC繞點C順時針旋轉(zhuǎn),使點B落在AB邊上點B′處,此時,點A的對應(yīng)點A′恰好落在BC邊的延長線上,下列結(jié)論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′4.關(guān)于的不等式的解集如圖所示,則的取值是A.0 B. C. D.5.如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°6.下列關(guān)于事件發(fā)生可能性的表述,正確的是()A.事件:“在地面,向上拋石子后落在地上”,該事件是隨機事件B.體育彩票的中獎率為10%,則買100張彩票必有10張中獎C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品D.?dāng)S兩枚硬幣,朝上的一面是一正面一反面的概率為7.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數(shù)為()A.30° B.45° C.60° D.75°8.李老師為了了解學(xué)生暑期在家的閱讀情況,隨機調(diào)查了20名學(xué)生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學(xué)生人數(shù)(名)12863則關(guān)于這20名學(xué)生閱讀小時數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.349.小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300km;②小路的車比小帶的車晚出發(fā)1h,卻早到1h;③小路的車出發(fā)后2.5h追上小帶的車;④當(dāng)小帶和小路的車相距50km時,t=或t=.其中正確的結(jié)論有()A.①②③④ B.①②④C.①② D.②③④10.下列運算正確的是()A.6-3=3B.-32=﹣3C.a(chǎn)?a2=a2D.(2a二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示,過y軸正半軸上的任意一點P,作x軸的平行線,分別與反比例函數(shù)的圖象交于點A和點B,若點C是x軸上任意一點,連接AC、BC,則△ABC的面積為_________.12.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構(gòu)成的圖形的面積為__________.13.8的立方根為_______.14.如圖,△ABC中,AB=AC,D是AB上的一點,且AD=AB,DF∥BC,E為BD的中點.若EF⊥AC,BC=6,則四邊形DBCF的面積為____.15.如圖,數(shù)軸上不同三點對應(yīng)的數(shù)分別為,其中,則點表示的數(shù)是__________.16.觀察下列各等式:……根據(jù)以上規(guī)律可知第11行左起第一個數(shù)是__.17.如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.三、解答題(共7小題,滿分69分)18.(10分)如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.19.(5分)如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關(guān)于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).20.(8分)為評估九年級學(xué)生的體育成績情況,某校九年級500名學(xué)生全部參加了“中考體育模擬考試”,隨機抽取了部分學(xué)生的測試成績作為樣本,并繪制出如下兩幅不完整的統(tǒng)計表和頻數(shù)分布直方圖:成績x分人數(shù)頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學(xué)生的成績;(2)通過計算將頻數(shù)分布直方圖補充完整;(3)若測試成績不低于40分為優(yōu)秀,請估計本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù).21.(10分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關(guān)于x的函數(shù)表達式;李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用來描述.請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.22.(10分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點B折疊在邊AC上(不與A、C重合),折痕為EF,點B在AC上的對應(yīng)點為M,設(shè)CD與EM交于點P,連接PF.已知BC=1.(1)若M為AC的中點,求CF的長;(2)隨著點M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請說明理由;②求△PFM的周長的取值范圍.23.(12分)解方程組24.(14分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.2、C【解析】
原式通分并利用同分母分式的減法法則計算,即可得到結(jié)果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.3、C【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)求解即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì),A:∠與∠均為旋轉(zhuǎn)角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結(jié)論,故答案:C.【點睛】本題主要考查三角形旋轉(zhuǎn)后具有的性質(zhì),注意靈活運用各條件4、D【解析】
首先根據(jù)不等式的性質(zhì),解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.5、A【解析】
根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理可得∠A=50°,再根據(jù)平行線的性質(zhì)可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據(jù)三角形內(nèi)角和定理即可求得∠DBC的度數(shù).【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點睛】本題考查了等腰三角形的性質(zhì),圓周角定理,三角形內(nèi)角和定理等,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.6、C【解析】
根據(jù)隨機事件,必然事件的定義以及概率的意義對各個小題進行判斷即可.【詳解】解:A.事件:“在地面,向上拋石子后落在地上”,該事件是必然事件,故錯誤.B.體育彩票的中獎率為10%,則買100張彩票可能有10張中獎,故錯誤.C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品,正確.D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為,故錯誤.故選:C.【點睛】考查必然事件,隨機事件的定義以及概率的意義,概率=所求情況數(shù)與總情況數(shù)之比.7、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質(zhì).8、B【解析】
A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權(quán)平均數(shù)公式代入計算可得;D、根據(jù)方差公式計算即可.【詳解】解:A、由統(tǒng)計表得:眾數(shù)為3,不是8,所以此選項不正確;B、隨機調(diào)查了20名學(xué)生,所以中位數(shù)是第10個和第11個學(xué)生的閱讀小時數(shù),都是3,故中位數(shù)是3,所以此選項正確;C、平均數(shù)=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權(quán)平均數(shù);中位數(shù);眾數(shù).9、C【解析】
觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得小帶、小路兩車離開A城的距離y與時間t的關(guān)系式,可求得兩函數(shù)圖象的交點,可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,可得出答案.【詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時間為5h,而小路是在小帶出發(fā)1h后出發(fā)的,且用時3h,即比小帶早到1h,∴①②都正確;設(shè)小帶車離開A城的距離y與t的關(guān)系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設(shè)小路車離開A城的距離y與t的關(guān)系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y(tǒng)小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點橫坐標(biāo)為t=2.5,此時小路出發(fā)時間為1.5h,即小路車出發(fā)1.5h后追上甲車,∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當(dāng)100-40t=50時,可解得t=,當(dāng)100-40t=-50時,可解得t=,又當(dāng)t=時,y小帶=50,此時小路還沒出發(fā),當(dāng)t=時,小路到達B城,y小帶=250.綜上可知當(dāng)t的值為或或或時,兩車相距50km,∴④不正確.故選C.【點睛】本題主要考查一次函數(shù)的應(yīng)用,掌握一次函數(shù)圖象的意義是解題的關(guān)鍵,特別注意t是甲車所用的時間.10、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】
設(shè)P(0,b),∵直線APB∥x軸,∴A,B兩點的縱坐標(biāo)都為b,而點A在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=-,即A點坐標(biāo)為(-,b),又∵點B在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=,即B點坐標(biāo)為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.12、12.2【解析】
∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構(gòu)成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.13、2.【解析】
根據(jù)立方根的定義可得8的立方根為2.【點睛】本題考查了立方根.14、2【解析】
解:如圖,過D點作DG⊥AC,垂足為G,過A點作AH⊥BC,垂足為H,∵AB=AC,點E為BD的中點,且AD=AB,∴設(shè)BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽Rt△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.15、1【解析】
根據(jù)兩點間的距離公式可求B點坐標(biāo),再根據(jù)絕對值的性質(zhì)即可求解.【詳解】∵數(shù)軸上不同三點A、B、C對應(yīng)的數(shù)分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點睛】考查了實數(shù)與數(shù)軸,絕對值,關(guān)鍵是根據(jù)兩點間的距離公式求得B點坐標(biāo).16、-1.【解析】
觀察規(guī)律即可解題.【詳解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一個數(shù)比右側(cè)的數(shù)大一,∴第11行左起第一個數(shù)是-1.【點睛】本題是一道規(guī)律題,屬于簡單題,認(rèn)真審題找到規(guī)律是解題關(guān)鍵.17、1【解析】
利用△ACD∽△CBD,對應(yīng)線段成比例就可以求出.【詳解】∵CD⊥AB,∠ACB=90°,∴△ACD∽△CBD,∴,∴,∴CD=1.【點睛】本題考查了相似三角形的性質(zhì)和判定,熟練掌握相似三角形的判定方法是關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1);(2).【解析】【分析】(1)根據(jù)題意可求得2個“-2”所占的扇形圓心角的度數(shù),再利用概率公式進行計算即可得;(2)由題意可得轉(zhuǎn)出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率為=;(2)由(1)可知,該轉(zhuǎn)盤轉(zhuǎn)出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結(jié)果共9種,其中數(shù)字之積為正數(shù)的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標(biāo)為:(2,0)【解析】
(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標(biāo)變化是:橫、縱坐標(biāo)都變?yōu)橄喾磾?shù),找到對應(yīng)點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標(biāo)為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應(yīng)用20、(1)50;(2)詳見解析;(3)220.【解析】
(1)利用1組的人數(shù)除以1組的頻率可求此次抽查了多少名學(xué)生的成績;(2)根據(jù)總數(shù)乘以3組的頻率可求a,用50減去其它各組的頻數(shù)即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數(shù)分布直方圖補充完整;(3)先得到成績優(yōu)秀的頻率,再乘以500即可求解.【詳解】解:(1)4÷0.08=50(名).答:此次抽查了50名學(xué)生的成績;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如圖所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù)是220名.【點睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表。21、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分鐘.【解析】
(1)根據(jù)表格中的數(shù)據(jù),運用待定系數(shù)法,即可求得y1關(guān)于x的函數(shù)表達式;(2)設(shè)李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據(jù)二次函數(shù)的性質(zhì),即可得出最短時間.【詳解】(1)設(shè)y1=kx+b,將(8,18),(9,20),代入y1=kx+b,得:解得所以y1關(guān)于x的函數(shù)解析式為y1=2x+2.(2)設(shè)李華從文化宮回到家所需的時間為y,則y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以當(dāng)x=9時,y取得最小值,最小值為39.5,答:李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.【點睛】本題主要考查了二次函數(shù)的應(yīng)用,解此類題的關(guān)鍵是通過題意,確定出二次函數(shù)的解析式,然后確定其最大值最小值,在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.22、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解析】
(1)由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構(gòu)建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設(shè)FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結(jié)論.【詳解】(1)∵M為AC的中點,∴CM=AC=BC=2,由折疊的性質(zhì)可知,F(xiàn)B=FM,設(shè)CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024苗木種植與水資源利用合作合同規(guī)范3篇
- 2024版計算機軟件許可與實施協(xié)議版B版
- 2024年路演活動專用展示廳房屋租賃轉(zhuǎn)租合同3篇
- 2024年項目合作合同:文化旅游景區(qū)開發(fā)與合作
- 2024年食品冷鏈物流與配送服務(wù)合同
- 2024年鮮活水產(chǎn)品運輸合同3篇
- 2024年高效委托薪資發(fā)放合作合同版B版
- 2024年采購合同范本:供應(yīng)商與采購方的貨物質(zhì)量、交付時間等關(guān)鍵條款
- 2022年撫順職業(yè)技術(shù)學(xué)院公共課《馬克思主義基本原理概論》期末試卷A(有答案)
- Unit+5+I+think+that+mooncakes+are+delicious同步練-+2024-2025學(xué)年魯教版(五四學(xué)制)八年級英語下冊+
- AQ/T 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范(正式版)
- 培訓(xùn)機構(gòu)與學(xué)校合作協(xié)議書范本
- 留置導(dǎo)尿法操作評分標(biāo)準(zhǔn)
- 2024年高考數(shù)學(xué)經(jīng)典解答題-立體幾何專項復(fù)習(xí)17題(附答案)
- 麻醉管理-血氣分析在手術(shù)中的應(yīng)用
- 建立安全監(jiān)督與反饋機制
- 水電站生態(tài)環(huán)境影響評估
- 2024車載定位系統(tǒng)技術(shù)要求及試驗方法 第1部分:衛(wèi)星定位
- 全過程工程咨詢服務(wù)服務(wù)質(zhì)量保障方案
- 四年級數(shù)學(xué)(四則混合運算)計算題專項練習(xí)與答案
- 心梗腦梗健康知識講座
評論
0/150
提交評論