版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省吉安市萬安縣市級名校2024年中考數(shù)學(xué)五模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長為()A. B. C. D.2.如圖,以正方形ABCD的邊CD為邊向正方形ABCD外作等邊△CDE,AC與BE交于點F,則∠AFE的度數(shù)是()A.135° B.120° C.60° D.45°3.2017年,山西省經(jīng)濟(jì)發(fā)展由“疲”轉(zhuǎn)“興”,經(jīng)濟(jì)增長步入合理區(qū)間,各項社會事業(yè)發(fā)展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經(jīng)濟(jì)總體保持平穩(wěn),第一季度山西省地區(qū)生產(chǎn)總值約為3122億元,比上年增長6.2%.?dāng)?shù)據(jù)3122億元用科學(xué)記數(shù)法表示為()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元4.“車輛隨機(jī)到達(dá)一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件5.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.6.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.47.如圖,是由7個大小相同的小正方體堆砌而成的幾何體,若從標(biāo)有①、②、③、④的四個小正方體中取走一個后,余下幾何體與原幾何體的主視圖相同,則取走的正方體是()A.① B.② C.③ D.④8.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°9.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點E,則的長為()A. B. C. D.10.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.12.把多項式a3-2a2+a分解因式的結(jié)果是13.不等式2x-5<7-(x-5)的解集是______________.14.如圖,半圓O的直徑AB=7,兩弦AC、BD相交于點E,弦CD=,且BD=5,則DE=_____.15.如圖,BD是矩形ABCD的一條對角線,點E,F(xiàn)分別是BD,DC的中點.若AB=4,BC=3,則AE+EF的長為_____.16.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關(guān)于x的一元二次方程﹣x2+bx+c=0的解為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)(x<0)的圖象交于點B(﹣2,n),過點B作BC⊥x軸于點C,點D(3﹣3n,1)是該反比例函數(shù)圖象上一點.求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.18.(8分)如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;(2)已知點F(0,),當(dāng)點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.19.(8分)如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.求∠CFA度數(shù);求證:AD∥BC.20.(8分)某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結(jié)果保留根號).21.(8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個球,恰好摸到紅球的概率是;先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.22.(10分)為了解某校七年級學(xué)生的英語口語水平,隨機(jī)抽取該年級部分學(xué)生進(jìn)行英語口語測試,學(xué)生的測試成績按標(biāo)準(zhǔn)定為A、B、C、D
四個等級,并把測試成績繪成如圖所示的兩個統(tǒng)計圖表.七年級英語口語測試成績統(tǒng)計表成績分等級人數(shù)A12BmCnD9請根據(jù)所給信息,解答下列問題:本次被抽取參加英語口語測試的學(xué)生共有多少人?求扇形統(tǒng)計圖中
C
級的圓心角度數(shù);若該校七年級共有學(xué)生640人,根據(jù)抽樣結(jié)課,估計英語口語達(dá)到
B級以上包括B
級的學(xué)生人數(shù).23.(12分)如圖,在平面直角坐標(biāo)系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數(shù)的圖象上,將這兩點分別記為A,B,另一點記為C,(1)求出的值;(2)求直線AB對應(yīng)的一次函數(shù)的表達(dá)式;(3)設(shè)點C關(guān)于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).24.如圖,已知反比例函數(shù)y=k1x與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面積;若M(x1,y1),N(x2,y2)是反比例函數(shù)y=k1x的圖象上的兩點,且x1<x2,y
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
連接BF,由折疊可知AE垂直平分BF,根據(jù)勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點睛】本題考查的是翻折變換的性質(zhì)、矩形的性質(zhì)及勾股定理的應(yīng)用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.2、B【解析】
易得△ABF與△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度數(shù)即可.【詳解】∵四邊形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故選B.【點睛】此題考查正方形的性質(zhì),熟練掌握正方形及等邊三角形的性質(zhì),會運用其性質(zhì)進(jìn)行一些簡單的轉(zhuǎn)化.3、D【解析】
可以用排除法求解.【詳解】第一,根據(jù)科學(xué)記數(shù)法的形式可以排除A選項和C選項,B選項明顯不對,所以選D.【點睛】牢記科學(xué)記數(shù)法的規(guī)則是解決這一類題的關(guān)鍵.4、B【解析】
根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】“車輛隨機(jī)到達(dá)一個路口,遇到紅燈”是隨機(jī)事件.故選:.【點睛】本題考查了隨機(jī)事件,解決本題需要正確理解必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的實際;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、B【解析】
A.括號前是負(fù)號去括號都變號;B負(fù)次方就是該數(shù)次方后的倒數(shù),再根據(jù)前面兩個負(fù)號為正;C.兩個負(fù)號為正;D.三次根號和二次根號的算法.【詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【點睛】本題考查去括號法則的應(yīng)用,分式的性質(zhì),二次根式的算法,熟記知識點是解題的關(guān)鍵.6、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖7、A【解析】
根據(jù)題意得到原幾何體的主視圖,結(jié)合主視圖選擇.【詳解】解:原幾何體的主視圖是:.視圖中每一個閉合的線框都表示物體上的一個平面,左側(cè)的圖形只需要兩個正方體疊加即可.故取走的正方體是①.故選A.【點睛】本題考查了簡單組合體的三視圖,中等難度,作出幾何體的主視圖是解題關(guān)鍵.8、C【解析】
根據(jù)非負(fù)數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故選C.9、B【解析】
連接OE,由菱形的性質(zhì)得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點睛】本題考查弧長公式、菱形的性質(zhì)、等腰三角形的性質(zhì)等知識;熟練掌握菱形的性質(zhì),求出∠DOE的度數(shù)是解決問題的關(guān)鍵.10、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當(dāng)m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標(biāo)大于-2,當(dāng)m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標(biāo)小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.二、填空題(本大題共6個小題,每小題3分,共18分)11、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.12、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.13、x<【解析】解:去括號得:2x-5<7-x+5,移項、合并得:3x<17,解得:x<.故答案為:x<.14、.【解析】
連接OD,OC,AD,由⊙O的直徑AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根據(jù)勾股定理可求出AD的長,在Rt△ADE中,利用∠DAC的正切值求解即可.【詳解】解:連接OD,OC,AD,∵半圓O的直徑AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴在Rt△ADE中,∵∠DAC=30°,∴DE=AD?tan30°故答案為【點睛】本題考查了圓周角定理、等邊三角形的判定與性質(zhì),勾股定理的應(yīng)用等知識;綜合性比較強(qiáng).15、1【解析】
先根據(jù)三角形中位線定理得到的長,再根據(jù)直角三角形斜邊上中線的性質(zhì),即可得到的長,進(jìn)而得出計算結(jié)果.【詳解】解:∵點E,F(xiàn)分別是的中點,∴FE是△BCD的中位線,.又∵E是BD的中點,∴Rt△ABD中,,故答案為1.【點睛】本題主要考查了矩形的性質(zhì)以及三角形中位線定理的運用,解題時注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.16、x1=1,x2=﹣1.【解析】
直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標(biāo),從而求得關(guān)于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標(biāo)為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【點睛】本題考查了二次函數(shù)與一元二次方程的關(guān)系.一元二次方程-x2+bx+c=0的解實質(zhì)上是拋物線y=-x2+bx+c與x軸交點的橫坐標(biāo)的值.三、解答題(共8題,共72分)17、(1)-6;(2).【解析】
(1)由點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標(biāo),作DE⊥BC.延長DE交AB于點F,證△DBE≌△FBE得DE=FE=4,即可知點F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點B(﹣2,3)、D(﹣6,1),如圖,過點D作DE⊥BC于點E,延長DE交AB于點F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點F(2,1),將點B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線段的長.18、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標(biāo)為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】
分析:(1)待定系數(shù)法求解可得;
(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標(biāo).詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),
將點C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點D坐標(biāo)為(0,-2),
設(shè)直線BD解析式為y=kx+b,
將B(4,0)、D(0,-2)代入,得:,解得:,
∴直線BD解析式為y=x-2,
∵QM⊥x軸,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
則QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴當(dāng)-m2+m+4=時,四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
即m=3時,四邊形DMQF是平行四邊形;
(3)如圖所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下兩種情況:
①當(dāng)∠DOB=∠MBQ=90°時,△DOB∽△MBQ,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
當(dāng)m=4時,點P、Q、M均與點B重合,不能構(gòu)成三角形,舍去,
∴m=3,點Q的坐標(biāo)為(3,2);
②當(dāng)∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,
此時m=-1,點Q的坐標(biāo)為(-1,0);
綜上,點Q的坐標(biāo)為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.點睛:本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運用.【詳解】請在此輸入詳解!19、(1)75°(2)見解析【解析】
(1)由等邊三角形的性質(zhì)可得∠ACB=60°,BC=AC,由旋轉(zhuǎn)的性質(zhì)可得CF=BC,∠BCF=90°,由等腰三角形的性質(zhì)可求解;(2)由“SAS”可證△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可證AD∥BC.【詳解】解:(1)∵△ABC是等邊三角形∴∠ACB=60°,BC=AC∵等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等邊三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),等腰三角形的性質(zhì),平行線的判定,熟練運用旋轉(zhuǎn)的性質(zhì)是本題關(guān)鍵.20、(1)60;(2)【解析】(1)由平行線的性質(zhì)以及方向角的定義得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根據(jù)方向角的定義得出∠BAC=∠BAE+∠CAE=75°,利用三角形內(nèi)角和定理求出∠C=60°;(2)作AD⊥BC交BC于點D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根據(jù)BC=BD+CD即可求解.解:(1)如圖所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故答案為60;(2)如圖,作AD⊥BC于D,在Rt△ABD中,∵∠ABD=45°,AB=60,∴AD=BD=30.在Rt△ACD中,∵∠C=60°,AD=30,∴tanC=,∴CD==10,∴BC=BD+CD=30+10.答:該船與B港口之間的距離CB的長為(30+10)海里.21、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計22、(1)60人;(2)144°;(3)288人.【解析】
等級人數(shù)除以其所占百分比即可得;先求出A等級對應(yīng)的百分比,再由百分比之和為1得出C等級的百分比,繼而乘以即可得;總?cè)藬?shù)乘以A、B等級百分比之和即可得.【詳解】解:本次被抽取參加英語口語測試的學(xué)生共
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人攝影器材租賃合同(2024版)3篇
- 只樂一中2025年度廉潔辦公室裝修工程實施方案3篇
- 個人貸款購銷合同
- 2025年度餐飲店特色調(diào)料研發(fā)與銷售合作合同范本3篇
- 2025年度深層水資源勘探打井合同范本4篇
- 二零二五版特種貨物搬運與安全監(jiān)管合同3篇
- 個人房屋抵押借款協(xié)議模板 2024版版B版
- 少兒肌膚護(hù)理專業(yè)教育與日常實踐的結(jié)合
- 現(xiàn)代家居的智能化照明管理-家用光控系統(tǒng)的設(shè)計與實施
- 2025年度太陽能組件組裝代加工合同4篇
- 項目績效和獎勵計劃
- 光伏自發(fā)自用項目年用電清單和消納計算表
- 量子計算在醫(yī)學(xué)圖像處理中的潛力
- 阿里商旅整體差旅解決方案
- 浙江天臺歷史文化名城保護(hù)規(guī)劃說明書
- 邏輯思維訓(xùn)練500題
- 第八講 發(fā)展全過程人民民主PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 實體瘤療效評價標(biāo)準(zhǔn)RECIST-1.1版中文
- 企業(yè)新春茶話會PPT模板
- GB/T 19185-2008交流線路帶電作業(yè)安全距離計算方法
- DIC診治新進(jìn)展課件
評論
0/150
提交評論