![湖北省宜昌市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view12/M08/17/02/wKhkGWY1rFSARHS0AAHT549ChxU778.jpg)
![湖北省宜昌市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view12/M08/17/02/wKhkGWY1rFSARHS0AAHT549ChxU7782.jpg)
![湖北省宜昌市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view12/M08/17/02/wKhkGWY1rFSARHS0AAHT549ChxU7783.jpg)
![湖北省宜昌市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view12/M08/17/02/wKhkGWY1rFSARHS0AAHT549ChxU7784.jpg)
![湖北省宜昌市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view12/M08/17/02/wKhkGWY1rFSARHS0AAHT549ChxU7785.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖北省宜昌市重點(diǎn)中學(xué)2024屆高三第四次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.192.函數(shù)的最小正周期是,則其圖象向左平移個(gè)單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.3.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.14.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.5.設(shè),分別是橢圓的左、右焦點(diǎn),過的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.6.為計(jì)算,設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入()A. B. C. D.7.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=08.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.9.函數(shù)的圖象大致是()A. B.C. D.10.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.11.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.9612.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動點(diǎn),則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.14.過動點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.15.設(shè)函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實(shí)數(shù)a的取值范圍是.16.已知,滿足約束條件,則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.18.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時(shí),恒有成立.19.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點(diǎn)將沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個(gè)四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.20.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個(gè)實(shí)數(shù)根,且,證明:.21.(12分)如圖,橢圓的長軸長為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過中心,且,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.22.(10分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時(shí),a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時(shí),要使得a1則ak+1則k=17,故選:B.【點(diǎn)睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.2、D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時(shí),.故選D.【點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.3、B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.4、B【解析】
作出不等式組對應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.5、C【解析】
根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.6、A【解析】
根據(jù)程序框圖輸出的S的值即可得到空白框中應(yīng)填入的內(nèi)容.【詳解】由程序框圖的運(yùn)行,可得:S=0,i=0滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=1,S=1,i=1滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規(guī)律可知:滿足判斷框內(nèi)的條件,執(zhí)行循環(huán)體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時(shí),應(yīng)該不滿足判斷框內(nèi)的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應(yīng)是i<1.故選:A.【點(diǎn)睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件時(shí)算法結(jié)束,屬于基礎(chǔ)題.7、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點(diǎn)評:本題考查了雙曲線的漸進(jìn)方程,把雙曲線的標(biāo)準(zhǔn)方程中的“1”轉(zhuǎn)化成“1”即可求出漸進(jìn)方程.屬于基礎(chǔ)題.8、D【解析】
直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D【點(diǎn)睛】熟悉復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的性質(zhì).9、B【解析】
根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計(jì)算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域?yàn)?,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【點(diǎn)睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運(yùn)算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.10、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.11、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識,屬于基礎(chǔ)題.12、A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線轉(zhuǎn)化為函數(shù)求最值。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻?,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時(shí),取得最大值.而當(dāng)在同一個(gè)大圓上,且,點(diǎn)與線段在球心的異側(cè)時(shí),取得最大值,如圖所示:此時(shí),故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.14、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.15、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當(dāng)時(shí)在[2,上單調(diào)遞增;當(dāng)時(shí)在上單調(diào)遞增;在上單調(diào)遞減,因此實(shí)數(shù)a的取值范圍是考點(diǎn):函數(shù)單調(diào)性16、【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點(diǎn)處取最小值為.故答案為:【點(diǎn)睛】本題考查簡單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點(diǎn)既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點(diǎn)的導(dǎo)數(shù)再列一方程,解方程組即可;(2)先對求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域?yàn)橛梢阎?,則,解得.(2)由題意得,則.當(dāng)時(shí),,所以單調(diào)遞減,當(dāng)時(shí),,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以的極大值為,即由(2)知,時(shí),,且的最小值點(diǎn)與的最大值點(diǎn)不同,所以,即.所以,.【點(diǎn)睛】知識方面,考查建立方程組求未知數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運(yùn)算求解能力;試題難度大.18、(1)2;(2);(3)證明見解析【解析】
(1)先求出函數(shù)的定義域和導(dǎo)數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域?yàn)椋?,和三種情況討論,分別求得函數(shù)的最小值,即可得到結(jié)論;(3)由,得到,把,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域?yàn)?,則,因?yàn)楹瘮?shù)在處取得極值,所以,即,解得,經(jīng)檢驗(yàn),滿足題意,所以.(2)由(1)得,定義域?yàn)?,?dāng)時(shí),有,在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時(shí),由得,且,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時(shí),則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,綜上可得:當(dāng)時(shí),在區(qū)間上的最小值為1,當(dāng)時(shí),在區(qū)間上的最小值為.(3)由得,當(dāng)時(shí),,則,欲證,只需證,即證,即,設(shè),則,當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,即,故,即當(dāng)時(shí),恒有成立.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.19、Ⅰ詳見解析;Ⅱ①,②或.【解析】
Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點(diǎn)A為坐標(biāo)原點(diǎn),分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,可以求出相應(yīng)點(diǎn)的坐標(biāo),求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大??;求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當(dāng)沿AD折起時(shí),,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點(diǎn)A為坐標(biāo)原點(diǎn),分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設(shè)平面PBC的法向量為y,,則,取,得0,,設(shè)平面PCD的法向量b,,則,取,得1,,設(shè)二面角的大小為,可知為鈍角,則,.二面角的大小為.設(shè)AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【點(diǎn)睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點(diǎn)問題.20、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】
(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(Ⅱ)求導(dǎo)分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點(diǎn)處的切線方程為.(Ⅱ)設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當(dāng)時(shí),此時(shí),且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因?yàn)?,故設(shè)的解為,因?yàn)?故.所以在遞減,在遞增.因?yàn)榉匠逃袃蓚€(gè)實(shí)數(shù)根,故.結(jié)合(Ⅰ)(Ⅱ)有,在上恒成立.設(shè)的解為,則;設(shè)的解為,則.故,.故,得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及根據(jù)函數(shù)的單調(diào)性與最值求解參數(shù)值的問題.同時(shí)也考查了構(gòu)造函數(shù)結(jié)合前問的結(jié)論證明不等式的方法.屬于難題.21、(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冀教版小學(xué)信息技術(shù)三年級上冊《十 珍藏雷鋒照片》說課稿
- 乒乓球 正手攻球技術(shù) 說課稿-2023-2024學(xué)年高一上學(xué)期體育與健康人教版必修第一冊
- 建筑節(jié)能改造設(shè)備采購安裝合同
- 公職人員購房合同標(biāo)準(zhǔn)文本
- 2025年度建筑工程勞務(wù)派遣聘用合同范本
- 鋼材采購居間服務(wù)合同范本
- 出租車加盟合作協(xié)議合同范本
- 檔案保管合同協(xié)議書范本
- 2025年度建筑項(xiàng)目預(yù)付款擔(dān)保服務(wù)標(biāo)準(zhǔn)合同
- 合同范本:大型設(shè)備借款
- 5《這些事我來做》(說課稿)-部編版道德與法治四年級上冊
- 2025年度高端商務(wù)車輛聘用司機(jī)勞動合同模板(專業(yè)版)4篇
- 2025年福建福州市倉山區(qū)國有投資發(fā)展集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 2025年人教版新教材數(shù)學(xué)一年級下冊教學(xué)計(jì)劃(含進(jìn)度表)
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2025長江航道工程局招聘101人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年黑龍江哈爾濱市面向社會招聘社區(qū)工作者1598人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年國新國際投資有限公司招聘筆試參考題庫含答案解析
- 2025年八省聯(lián)考四川高考生物試卷真題答案詳解(精校打印)
- 《供電營業(yè)規(guī)則》
- 執(zhí)行總經(jīng)理崗位職責(zé)
評論
0/150
提交評論