安徽省固鎮(zhèn)縣重點達標名校2024屆中考沖刺卷數(shù)學試題含解析_第1頁
安徽省固鎮(zhèn)縣重點達標名校2024屆中考沖刺卷數(shù)學試題含解析_第2頁
安徽省固鎮(zhèn)縣重點達標名校2024屆中考沖刺卷數(shù)學試題含解析_第3頁
安徽省固鎮(zhèn)縣重點達標名校2024屆中考沖刺卷數(shù)學試題含解析_第4頁
安徽省固鎮(zhèn)縣重點達標名校2024屆中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省固鎮(zhèn)縣重點達標名校2024屆中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若關于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,32.如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°3.如圖是某幾何體的三視圖及相關數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π4.已知一個多邊形的每一個外角都相等,一個內(nèi)角與一個外角的度數(shù)之比是3:1,這個多邊形的邊數(shù)是A.8 B.9 C.10 D.125.去年二月份,某房地產(chǎn)商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.6.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(

)A.9分B.8分C.7分D.6分7.下列說法正確的是()A.某工廠質檢員檢測某批燈泡的使用壽命采用普查法B.已知一組數(shù)據(jù)1,a,4,4,9,它的平均數(shù)是4,則這組數(shù)據(jù)的方差是7.6C.12名同學中有兩人的出生月份相同是必然事件D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”中,任取其中一個圖形,恰好既是中心對稱圖形,又是軸對稱圖形的概率是8.已知正比例函數(shù)的圖象經(jīng)過點,則此正比例函數(shù)的關系式為().A. B. C. D.9.下列計算正確的是A. B. C. D.10.甲、乙兩班舉行電腦漢字輸入比賽,參賽學生每分鐘輸入漢字個數(shù)的統(tǒng)計結果如下表:班級參加人數(shù)平均數(shù)中位數(shù)方差甲55135149191乙55135151110某同學分析上表后得出如下結論:①甲、乙兩班學生的平均成績相同;②乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù)(每分鐘輸入漢字≥150個為優(yōu)秀);③甲班成績的波動比乙班大.上述結論中,正確的是()A.①② B.②③ C.①③ D.①②③11.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°12.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x=2是一元二次方程x2﹣2mx+4=0的一個解,則m的值為.14.用4塊完全相同的長方形拼成正方形(如圖),用不同的方法,計算圖中陰影部分的面積,可得到1個關于的等式為________.15.因式分解:=___.16.如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.17.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.18.如圖所示,矩形ABCD的頂點D在反比例函數(shù)(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,△BCE的面積是6,則k=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)020.(6分)在傳箴言活動中,某班團支部對該班全體團員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進行統(tǒng)計,并繪制成了如圖所示的兩幅統(tǒng)計圖(1)將條形統(tǒng)計圖補充完整;(2)該班團員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是________;(3)如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學,現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加總結會,請你用列表或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.21.(6分)某水果批發(fā)市場香蕉的價格如下表購買香蕉數(shù)(千克)不超過20千克20千克以上但不超過40千克40千克以上每千克的價格6元5元4元張強兩次共購買香蕉50千克,已知第二次購買的數(shù)量多于第一次購買的數(shù)量,共付出264元,請問張強第一次,第二次分別購買香蕉多少千克?22.(8分)某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.23.(8分)如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當EF⊥AC時,求證四邊形AECF是菱形.24.(10分)對于某一函數(shù)給出如下定義:若存在實數(shù)m,當其自變量的值為m時,其函數(shù)值等于﹣m,則稱﹣m為這個函數(shù)的反向值.在函數(shù)存在反向值時,該函數(shù)的最大反向值與最小反向值之差n稱為這個函數(shù)的反向距離.特別地,當函數(shù)只有一個反向值時,其反向距離n為零.例如,圖中的函數(shù)有4,﹣1兩個反向值,其反向距離n等于1.(1)分別判斷函數(shù)y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數(shù)y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數(shù)y=請直接寫出這個函數(shù)的反向距離的所有可能值,并寫出相應m的取值范圍.25.(10分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.26.(12分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).27.(12分)為了維護國家主權和海洋權利,海監(jiān)部門對我國領海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.2、B【解析】

由圖形可知AC=AC,結合全等三角形的判定方法逐項判斷即可.【詳解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴當CB=CD時,滿足SSS,可證明△ABC≌△ACD,故A可以;當∠BCA=∠DCA時,滿足SSA,不能證明△ABC≌△ACD,故B不可以;當∠BAC=∠DAC時,滿足SAS,可證明△ABC≌△ACD,故C可以;當∠B=∠D=90°時,滿足HL,可證明△ABC≌△ACD,故D可以;故選:B.【點睛】本題考查了全等三角形的判定方法,熟練掌握判定定理是解題關鍵.3、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.4、A【解析】試題分析:設這個多邊形的外角為x°,則內(nèi)角為3x°,根據(jù)多邊形的相鄰的內(nèi)角與外角互補可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設這個多邊形的外角為x°,則內(nèi)角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數(shù):360°÷45°=8,故選A.考點:多邊形內(nèi)角與外角.5、D【解析】

根據(jù)題意可以用相應的代數(shù)式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.6、C【解析】分析:根據(jù)中位數(shù)的定義,首先將這組數(shù)據(jù)按從小到大的順序排列起來,由于這組數(shù)據(jù)共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據(jù)按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為:C.點睛:本題主要考查中位數(shù),解題的關鍵是掌握中位數(shù)的定義:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).7、B【解析】

分別用方差、全面調查與抽樣調查、隨機事件及概率的知識逐一進行判斷即可得到答案.【詳解】A.某工廠質檢員檢測某批燈泡的使用壽命時,檢測范圍比較大,因此適宜采用抽樣調查的方法,故本選項錯誤;B.根據(jù)平均數(shù)是4求得a的值為2,則方差為[(1?4)2+(2?4)2+(4?4)2+(4?4)2+(9?4)2]=7.6,故本選項正確;C.12個同學的生日月份可能互不相同,故本事件是隨機事件,故錯誤;D.在“等邊三角形、正方形、等腰梯形、矩形、正六邊形、正五邊形”六個圖形中有3個既是軸對稱圖形,又是中心對稱圖形,所以,恰好既是中心對稱圖形,又是軸對稱圖形的概率是,故本選項錯誤.故答案選B.【點睛】本題考查的知識點是概率公式、全面調查與抽樣調查、方差及隨機事件,解題的關鍵是熟練的掌握概率公式、全面調查與抽樣調查、方差及隨機事件.8、A【解析】

根據(jù)待定系數(shù)法即可求得.【詳解】解:∵正比例函數(shù)y=kx的圖象經(jīng)過點(1,﹣3),∴﹣3=k,即k=﹣3,∴該正比例函數(shù)的解析式為:y=﹣3x.故選A.【點睛】此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.9、B【解析】試題分析:根據(jù)合并同類項的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關鍵是靈活應用合并同類項法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進行計算.10、D【解析】分析:根據(jù)平均數(shù)、中位數(shù)、方差的定義即可判斷;詳解:由表格可知,甲、乙兩班學生的成績平均成績相同;根據(jù)中位數(shù)可以確定,乙班優(yōu)秀的人數(shù)多于甲班優(yōu)秀的人數(shù);根據(jù)方差可知,甲班成績的波動比乙班大.故①②③正確,故選D.點睛:本題考查平均數(shù)、中位數(shù)、方差等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.11、A【解析】

根據(jù)圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角求出∠A,根據(jù)圓周角定理計算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點睛】本題考查的知識點是圓的內(nèi)接四邊形性質,解題關鍵是熟記圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角(就是和它相鄰的內(nèi)角的對角).12、D【解析】

利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.【點睛】此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】試題分析:直接把x=1代入已知方程就得到關于m的方程,再解此方程即可.試題解析:∵x=1是一元二次方程x1-1mx+4=0的一個解,∴4-4m+4=0,∴m=1.考點:一元二次方程的解.14、(a+b)2﹣(a﹣b)2=4ab【解析】

根據(jù)長方形面積公式列①式,根據(jù)面積差列②式,得出結論.【詳解】S陰影=4S長方形=4ab①,S陰影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案為(a+b)2﹣(a﹣b)2=4ab.【點睛】本題考查了完全平方公式幾何意義的理解,此題有機地把代數(shù)與幾何圖形聯(lián)系在一起,利用幾何圖形的面積公式直接得出或由其圖形的和或差得出.15、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關鍵.16、4或8【解析】

由平移的性質可知陰影部分為平行四邊形,設A′D=x,根據(jù)題意陰影部分的面積為(12?x)×x,即x(12?x),當x(12?x)=32時,解得:x=4或x=8,所以AA′=8或AA′=4。【詳解】設AA′=x,AC與A′B′相交于點E,∵△ACD是正方形ABCD剪開得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD?AA′=12?x,∵兩個三角形重疊部分的面積為32,∴x(12?x)=32,整理得,x?12x+32=0,解得x=4,x=8,即移動的距離AA′等4或8.【點睛】本題考查正方形和圖形的平移,熟練掌握計算法則是解題關鍵·.17、41【解析】

已知一元二次方程的根判別式為△=b2﹣4ac,代入計算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關鍵.18、-1【解析】

先設D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據(jù)△BCE的面積是6,得出BC×OE=1,最后根據(jù)AB∥OE,得出,即BC?EO=AB?CO,求得ab的值即可.【詳解】設D(a,b),則CO=-a,CD=AB=b,∵矩形ABCD的頂點D在反比例函數(shù)y=(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=1,∵AB∥OE,∴,即BC?EO=AB?CO,∴1=b×(-a),即ab=-1,∴k=-1,故答案為-1.【點睛】本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,矩形的性質以及平行線分線段成比例定理的綜合應用,能很好地考核學生分析問題,解決問題的能力.解題的關鍵是將△BCE的面積與點D的坐標聯(lián)系在一起,體現(xiàn)了數(shù)形結合的思想方法.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1【解析】

直接利用特殊角的三角函數(shù)值和負指數(shù)冪的性質、零指數(shù)冪的性質、二次根式的性質分別化簡得出答案.【詳解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.20、(1)作圖見解析;(2)3;(3)【解析】

(1)根據(jù)發(fā)了3條箴言的人數(shù)與所占的百分比列式計算即可求出該班全體團員的總人數(shù)為12,再求出發(fā)了4條箴言的人數(shù),然后補全統(tǒng)計圖即可;(2)利用該班團員在這一個月內(nèi)所發(fā)箴言的總條數(shù)除以總人數(shù)即可求得結果;(3)列舉出所有情況,看恰好是一位男同學和一位女同學占總情況的多少即可.【詳解】解:(1)該班團員人數(shù)為:3÷25%=12(人),發(fā)了4條贈言的人數(shù)為:12?2?2?3?1=4(人),將條形統(tǒng)計圖補充完整如下:(2)該班團員所發(fā)贈言的平均條數(shù)為:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案為:3;(3)∵發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學,∴發(fā)了3條箴言的同學中有一位女同學,發(fā)了4條箴言的同學中有一位男同學,方法一:列表得:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;方法二:畫樹狀圖如下:共有12種結果,且每種結果的可能性相同,所選兩位同學中恰好是一位男同學和一位女同學的情況有7種,所選兩位同學中恰好是一位男同學和一位女同學的概率為:;【點睛】此題考查了樹狀圖法與列表法求概率,以及條形統(tǒng)計圖與扇形統(tǒng)計圖的知識.注意平均條數(shù)=總條數(shù)÷總人數(shù);如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.21、第一次買14千克香蕉,第二次買36千克香蕉【解析】

本題兩個等量關系為:第一次買的千克數(shù)+第二次買的千克數(shù)=50;第一次出的錢數(shù)+第二次出的錢數(shù)=1.對張強買的香蕉的千克數(shù),應分情況討論:①當0<x≤20,y≤40;②當0<x≤20,y>40③當20<x<3時,則3<y<2.【詳解】設張強第一次購買香蕉xkg,第二次購買香蕉ykg,由題意可得0<x<3.則①當0<x≤20,y≤40,則題意可得.解得.②當0<x≤20,y>40時,由題意可得.解得.(不合題意,舍去)③當20<x<3時,則3<y<2,此時張強用去的款項為5x+5y=5(x+y)=5×50=30<1(不合題意,舍去);④當20<x≤40y>40時,總質量將大于60kg,不符合題意,答:張強第一次購買香蕉14kg,第二次購買香蕉36kg.【點睛】本題主要考查學生分類討論的思想.找到兩個基本的等量關系后,應根據(jù)討論的千克數(shù)找到相應的價格進行作答.22、解:(1)10,50;(2)解法一(樹狀圖):從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)=;解法二(列表法):(以下過程同“解法一”)【解析】

試題分析:(1)由在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”元,“10”元,“20”元和“30”元的字樣,規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以再箱子里先后摸出兩個球(第一次摸出后不放回).即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與顧客所獲得購物券的金額不低于30元的情況,再利用概率公式求解即可求得答案.試題解析:(1)10,50;(2)解法一(樹狀圖):,從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;解法二(列表法):

0

10

20

30

0

﹣﹣

10

20

30

10

10

﹣﹣

30

40

20

20

30

﹣﹣

50

30

30

40

50

﹣﹣

從上表可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;考點:列表法與樹狀圖法.【詳解】請在此輸入詳解!23、(1)(2)證明見解析【解析】

(1)根據(jù)矩形的性質,通過“角角邊”證明三角形全等即可;(2)根據(jù)題意和(1)可得AC與EF互相垂直平分,所以四邊形AECF是菱形.【詳解】(1)證明:∵四邊形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F(兩直線平行,內(nèi)錯角相等),在△BOE與△DOF中,,∴△BOE≌△DOF(AAS).(2)證明:∵四邊形ABCD是矩形,∴OA=OC,又∵由(1)△BOE≌△DOF得,OE=OF,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴四邊形AECF是菱形.24、(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b=±1;②0≤n≤8;(3)當m>2或m≤﹣2時,n=2,當﹣2<m≤2時,n=2.【解析】

(1)根據(jù)題目中的新定義可以分別計算出各個函數(shù)是否有方向值,有反向值的可以求出相應的反向距離;(2)①根據(jù)題意可以求得相應的b的值;②根據(jù)題意和b的取值范圍可以求得相應的n的取值范圍;(3)根據(jù)題目中的函數(shù)解析式和題意可以解答本題.【詳解】(1)由題意可得,當﹣m=﹣m+1時,該方程無解,故函數(shù)y=﹣x+1沒有反向值,當﹣m=時,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距離為2,當﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距離是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距離為零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴當x≥m時,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;當x<m時,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論