版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
甘肅省嘉峪關(guān)市市級名校2024屆中考數(shù)學仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm2.的相反數(shù)是()A.6 B.-6 C. D.3.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a64.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.5.對于反比例函數(shù),下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小6.如圖,半徑為3的⊙A經(jīng)過原點O和點C(0,2),B是y軸左側(cè)⊙A優(yōu)弧上一點,則tan∠OBC為()A. B.2 C. D.7.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢的概率為 D.小明勝的概率和小亮勝的概率一樣8.現(xiàn)有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應在下列四根木棒中選取()A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒9.﹣3的相反數(shù)是()A. B. C. D.10.已知x=2是關(guān)于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.算術(shù)平方根等于本身的實數(shù)是__________.12.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關(guān)于對角線AC對稱,若DM=1,則tan∠ADN=.13.如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點B恰好落在邊AC上,與點B′重合,AE為折痕,則EB′=_______.14.如圖,將△AOB繞點按逆時針方向旋轉(zhuǎn)后得到,若,則的度數(shù)是_______.15.比較大?。?(填入“>”或“<”號)16.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個三角形,用這兩個三角形拼成平行四邊形,則這個平行四邊形較長的對角線的長是______.三、解答題(共8題,共72分)17.(8分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點在BC邊上,BP=1.①特殊情形:若MP過點A,NP過點D,則=.②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉(zhuǎn),使PM交AB邊于點E,PN交AD邊于點F,當點E與點B重合時,停止旋轉(zhuǎn).在旋轉(zhuǎn)過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點E是⊙A上一動點,CF⊥CE交AD于點F.請直接寫出當△AEB為直角三角形時的值.18.(8分)如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行60米到達C處,再測得山頂A的仰角為45°,求山高AD的長度.(測角儀高度忽略不計)19.(8分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長.20.(8分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.21.(8分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?22.(10分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.23.(12分)(1)解不等式組:;(2)解方程:.24.如圖,在三個小桶中裝有數(shù)量相同的小球(每個小桶中至少有三個小球),第一次變化:從左邊小桶中拿出兩個小球放入中間小桶中;第二次變化:從右邊小桶中拿出一個小球放入中間小桶中;第三次變化:從中間小桶中拿出一些小球放入右邊小桶中,使右邊小桶中小球個數(shù)是最初的兩倍.(1)若每個小桶中原有3個小球,則第一次變化后,中間小桶中小球個數(shù)是左邊小桶中小球個數(shù)的____倍;(2)若每個小桶中原有a個小球,則第二次變化后中間小桶中有_____個小球(用a表示);(3)求第三次變化后中間小桶中有多少個小球?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.詳解:設CN=xcm,則DN=(8﹣x)cm,由折疊的性質(zhì)知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質(zhì)是軸對稱,對應線段相等,對應角相等,通常用勾股定理解決折疊問題.2、D【解析】
根據(jù)相反數(shù)的定義解答即可.【詳解】根據(jù)相反數(shù)的定義有:的相反數(shù)是.故選D.【點睛】本題考查了相反數(shù)的意義,一個數(shù)的相反數(shù)就是在這個數(shù)前面添上“﹣”號;一個正數(shù)的相反數(shù)是負數(shù),一個負數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.3、D【解析】各項計算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D4、A【解析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質(zhì)得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質(zhì)、平行四邊形的性質(zhì)、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.5、C【解析】
由題意分析可知,一個點在函數(shù)圖像上則代入該點必定滿足該函數(shù)解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數(shù)圖象上,A正確;因為2大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數(shù)在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數(shù)【點睛】本題屬于對反比例函數(shù)的基本性質(zhì)以及反比例函數(shù)的在各個象限單調(diào)性的變化6、C【解析】試題分析:連結(jié)CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據(jù)勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數(shù)的定義.7、D【解析】
利用概率公式,一一判斷即可解決問題.【詳解】A、錯誤.小明還有可能是平;B、錯誤、小明勝的概率是
,所以輸?shù)母怕适且彩?;C、錯誤.兩人出相同手勢的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.【點睛】本題考查列表法、樹狀圖等知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、B【解析】
設應選取的木棒長為x,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍.進而可得出結(jié)論.【詳解】設應選取的木棒長為x,則30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故選B.【點睛】本題考查的是三角形的三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊差小于第三邊是解答此題的關(guān)鍵.9、D【解析】
相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【點睛】本題考查相反數(shù),題目簡單,熟記定義是關(guān)鍵.10、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.二、填空題(本大題共6個小題,每小題3分,共18分)11、0或1【解析】根據(jù)負數(shù)沒有算術(shù)平方根,一個正數(shù)的算術(shù)平方根只有一個,1和0的算術(shù)平方根等于本身,即可得出答案.解:1和0的算術(shù)平方根等于本身.故答案為1和0“點睛”本題考查了算術(shù)平方根的知識,注意掌握1和0的算術(shù)平方根等于本身.12、【解析】
M、N兩點關(guān)于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N兩點關(guān)于對角線AC對稱,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質(zhì),軸對稱的性質(zhì)以及銳角三角函數(shù)的定義.13、1.5【解析】在Rt△ABC中,,∵將△ABC折疊得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.設B′E=BE=x,則CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.14、60°【解析】
根據(jù)題意可得,根據(jù)已知條件計算即可.【詳解】根據(jù)題意可得:,故答案為60°【點睛】本題主要考查旋轉(zhuǎn)角的有關(guān)計算,關(guān)鍵在于識別那個是旋轉(zhuǎn)角.15、>【解析】
試題解析:∵<∴4<.考點:實數(shù)的大小比較.【詳解】請在此輸入詳解!16、10,,.【解析】解:如圖,過點A作AD⊥BC于點D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對角線長為:10;如圖②所示:AD=8,連接BC,過點C作CE⊥BD于點E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.三、解答題(共8題,共72分)17、(1)①特殊情形:;②類比探究:是定值,理由見解析;(2)或【解析】
(1)證明,即可求解;(2)點E與點B重合時,四邊形EBFA為矩形,即可求解;(3)分時、時,兩種情況分別求解即可.【詳解】解:(1),,故答案為;(2)點E與點B重合時,四邊形EBFA為矩形,則為定值;(3)①當時,如圖3,過點E、F分別作直線BC的垂線交于點G,H,由(1)知:,,同理,.則,則;②當時,如圖4,,則,,則,,則,故或.【點睛】本題考查的圓知識的綜合運用,涉及到解直角三角形的基本知識,其中(3),要注意分類求解,避免遺漏.18、30米【解析】
設AD=xm,在Rt△ACD中,根據(jù)正切的概念用x表示出CD,在Rt△ABD中,根據(jù)正切的概念列出方程求出x的值即可.【詳解】由題意得,∠ABD=30°,∠ACD=45°,BC=60m,設AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴,∴米,答:山高AD為30米.【點睛】本題考查的是解直角三角形的應用﹣仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.19、證明見解析;.【解析】
根據(jù)兩組對邊分別平行的四邊形是平行四邊形即可證明;只要求出CD即可解決問題.【詳解】證明:、E分別是AB、AC的中點,又四邊形CDEF為平行四邊形.,,又為AB中點,在中,,,四邊形CDEF是平行四邊形,.【點睛】本題考查平行四邊形的判定和性質(zhì)、勾股定理、三角形的中位線定理等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.20、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)先根據(jù)CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據(jù)AB∥CD得出∠ABD=∠BDC,故可得出結(jié)論;(2)先根據(jù)∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進而可得出結(jié)論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點:相似三角形的判定與性質(zhì).21、男生有12人,女生有21人.【解析】
設該興趣小組男生有x人,女生有y人,然后再根據(jù):(男生的人數(shù)-1)×2-1=女生的人數(shù),(女生的人數(shù)-1)×=男生的人數(shù)
,列出方程組,再進行求解即可.【詳解】設該興趣小組男生有x人,女生有y人,依題意得:,解得:.答:該興趣小組男生有12人,女生有21人.【點睛】本題主要考查了二元一次方程組的應用,解題的關(guān)鍵是明確題中各個量之間的關(guān)系,并找出等量關(guān)系列出方程組.22、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標;(3)A關(guān)于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關(guān)于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,理由是:∵MA=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年物業(yè)與業(yè)主社區(qū)養(yǎng)老服務體系合同3篇
- 二零二五版高速公路監(jiān)控系統(tǒng)集成采購與安裝合同2篇
- 2025版定制化鐵藝工程勞務分包服務合同3篇
- 安徽省高三上學期校聯(lián)考化學試卷及答案(含答案解析)
- 二零二五年度木地板產(chǎn)品回收與再利用合同3篇
- 動漫產(chǎn)業(yè)法律法規(guī)與版權(quán)保護考核試卷
- 城市規(guī)劃與城市能源結(jié)構(gòu)調(diào)整考核試卷
- 塑料加工過程中的物料管理與優(yōu)化考核試卷
- 二零二五版養(yǎng)老設施建設項目合伙承包合同樣本3篇
- 2025年度某某酒店電梯設施維護保養(yǎng)合同2篇
- 勞務協(xié)議范本模板
- 2025大巴車租車合同范文
- 老年上消化道出血急診診療專家共識2024
- 人教版(2024)數(shù)學七年級上冊期末測試卷(含答案)
- 2024年國家保密培訓
- 磚廠承包合同簽訂轉(zhuǎn)讓合同
- 思政課國內(nèi)外研究現(xiàn)狀分析
- 皮膚感染的護理診斷與護理措施
- 2023年公務員多省聯(lián)考《申論》題(廣西B卷)
- EPC總承包項目中的質(zhì)量管理體系
- 高中物理考試成績分析報告
評論
0/150
提交評論