湖北省沙洋縣2024年中考數(shù)學最后沖刺模擬試卷含解析_第1頁
湖北省沙洋縣2024年中考數(shù)學最后沖刺模擬試卷含解析_第2頁
湖北省沙洋縣2024年中考數(shù)學最后沖刺模擬試卷含解析_第3頁
湖北省沙洋縣2024年中考數(shù)學最后沖刺模擬試卷含解析_第4頁
湖北省沙洋縣2024年中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省沙洋縣2024年中考數(shù)學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,2.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算3.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣14.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°5.下列手機手勢解鎖圖案中,是軸對稱圖形的是()A. B. C. D.6.實數(shù)的倒數(shù)是()A. B. C. D.7.下列計算正確的是A.a(chǎn)2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-48.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠19.化簡÷的結果是()A. B. C. D.2(x+1)10.為了配合“我讀書,我快樂”讀書節(jié)活動,某書店推出一種優(yōu)惠卡,每張卡售價20元,憑卡購書可享受8折優(yōu)惠,小慧同學到該書店購書,她先買優(yōu)惠卡再憑卡付款,結果節(jié)省了10元,若此次小慧同學不買卡直接購書,則她需付款:A.140元 B.150元 C.160元 D.200元二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的一元二次方程x2+4x﹣k=0有實數(shù)根,則k的取值范圍是__________.12.已知一個正數(shù)的平方根是3x-2和5x-6,則這個數(shù)是_____.13.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=________.14.北京奧運會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學記數(shù)法可表示為.15.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.16.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.三、解答題(共8題,共72分)17.(8分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.18.(8分)某中學九年級數(shù)學興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進6米到達D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結果精確到米,,19.(8分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.求證:△ADE≌△BFE;若DF平分∠ADC,連接CE.試判斷CE和DF的位置關系,并說明理由.20.(8分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關系是,位置關系是.探究證明:在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.21.(8分)計算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|22.(10分)某市正在舉行文化藝術節(jié)活動,一商店抓住商機,決定購進甲,乙兩種藝術節(jié)紀念品.若購進甲種紀念品4件,乙種紀念品3件,需要550元,若購進甲種紀念品5件,乙種紀念品6件,需要800元.(1)求購進甲、乙兩種紀念品每件各需多少元?(2)若該商店決定購進這兩種紀念品共80件,其中甲種紀念品的數(shù)量不少于60件.考慮到資金周轉(zhuǎn),用于購買這80件紀念品的資金不能超過7100元,那么該商店共有幾種進貨方案7(3)若銷售每件甲種紀含晶可獲利潤20元,每件乙種紀念品可獲利潤30元.在(2)中的各種進貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?23.(12分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點D,DE⊥AB于點E.(1)依題意補全圖形;(2)猜想AE與CD的數(shù)量關系,并證明.24.如圖,為了測量建筑物AB的高度,在D處樹立標桿CD,標桿的高是2m,在DB上選取觀測點E、F,從E測得標桿和建筑物的頂部C、A的仰角分別為58°、45°.從F測得C、A的仰角分別為22°、70°.求建筑物AB的高度(精確到0.1m).(參考數(shù)據(jù):tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關鍵.2、B【解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.3、A【解析】

直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關鍵.4、B【解析】

解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【點睛】本題考查平行線的性質(zhì),掌握兩直線平行,同位角相等是解題關鍵.5、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,所以A錯誤;B.既不是軸對稱圖形,也不是中心對稱圖形,所以B錯誤;C.是中心對稱圖形,不是軸對稱圖形,所以C錯誤;D.是軸對稱圖形,不是中心對稱圖形,所以D正確.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握定義是本題解題的關鍵.6、D【解析】因為=,所以的倒數(shù)是.故選D.7、B【解析】【分析】根據(jù)同底數(shù)冪乘法、冪的乘方、合并同類項法則、完全平方公式逐項進行計算即可得.【詳解】A.a2·a2=a4,故A選項錯誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項錯誤;D.(a-2)2=a2-4a+4,故D選項錯誤,故選B.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、合并同類項、完全平方公式,熟練掌握各運算的運算法則是解題的關鍵.8、D【解析】試題分析:∵代數(shù)式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.9、A【解析】

原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.10、B【解析】試題分析:此題的關鍵描述:“先買優(yōu)惠卡再憑卡付款,結果節(jié)省了人民幣10元”,設李明同學此次購書的總價值是人民幣是x元,則有:20+0.8x=x﹣10解得:x=150,即:小慧同學不憑卡購書的書價為150元.故選B.考點:一元一次方程的應用二、填空題(本大題共6個小題,每小題3分,共18分)11、k≥﹣1【解析】分析:根據(jù)方程的系數(shù)結合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數(shù)根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.12、【解析】

試題解析:根據(jù)題意,得:解得:故答案為【點睛】:一個正數(shù)有2個平方根,它們互為相反數(shù).13、1:3:5【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.故答案為1:3:5.點睛:本題考查了平行線的性質(zhì)及相似三角形的性質(zhì).相似三角形的面積比等于相似比的平方.14、2.58×1【解析】科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.258000=2.58×1.15、5或1.【解析】

先依據(jù)勾股定理求得AB的長,然后由翻折的性質(zhì)可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據(jù)勾股定理列出關于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.16、1【解析】

本題首先由等邊三角形的性質(zhì)及垂直定義得到∠DBE=60°,∠BEC=90°,再根據(jù)等腰三角形的性質(zhì)可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據(jù)三角形內(nèi)角和定理得出關系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【點睛】本題主要考查等腰三角形的性質(zhì)及等邊三角形的性質(zhì)及垂直定義,解題的關鍵是根據(jù)三角形內(nèi)角和定理列出符合題意的簡易方程,從而求出結果.三、解答題(共8題,共72分)17、(1)證明見解析;(2)AB=【解析】

(1)證明:∵,DE⊥AC于點F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.連接AG,∵AG=AG,AB=AF∴Rt△ABG≌Rt△AFG∴BG=FG(2)解:∵AD=DC,DF⊥AC∴∴∠E=30°∴∠FAD=∠E=30°∴AB=AF=18、14.2米;【解析】

Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據(jù)CD=BC-BD可得關于AB的方程,解方程可得.【詳解】設米∵∠C=45°在中,米,,

又米,在中Tan∠ADB=,Tan60°=解得答,建筑物的高度為米.【點睛】本題考查解直角三角形的應用-仰角俯角問題,解題的關鍵是利用數(shù)形結合的思想找出各邊之間的關系,然后找出所求問題需要的條件.19、(1)見解析;(1)見解析.【解析】

(1)由全等三角形的判定定理AAS證得結論.(1)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠1;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.20、(1)CE=BD,CE⊥BD.(2)(1)中的結論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)類似.(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,設DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數(shù)即可求得CF的最大值.詳解:(1)①∵AB=AC,∠BAC=90°,∴線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案為CE=BD,CE⊥BD.(2)(1)中的結論仍然成立.理由如下:如圖,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴線段CE,BD之間的位置關系和數(shù)量關系分別為:CE=BD,CE⊥BD.(3)如圖3,過A作AM⊥BC于M,EN⊥AM于N,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC為等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四邊形MCEN為平行四邊形,∵∠AMC=90°,∴四邊形MCEN為矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴,設DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1-x,∴,∴CF=-x2+x=-(x-)2+,∴當x=時有最大值,CF最大值為.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等.也考查了等腰直角三角形的性質(zhì)和三角形全等及相似的判定與性質(zhì).21、-4【解析】分析:第一項根據(jù)乘方的意義計算,第二項非零數(shù)的零次冪等于1,第三項根據(jù)特殊角銳角三角函數(shù)值計算,第四項根據(jù)絕對值的意義化簡.詳解:原式=-4+1-2×+-1=-4點睛:本題考查了實數(shù)的運算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對值的意義是解答本題的關鍵.22、(1)購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)有三種進貨方案.方案一:甲種紀念品60件,乙種紀念品20件;方案二:甲種紀念品61件,乙種紀念品19件;方案三:甲種紀念品1件,乙種紀念品18件.(3)若全部銷售完,方案一獲利最大,最大利潤是1800元.【解析】分析:(1)設購進甲種紀念品每件價格為x元,乙種紀念幣每件價格為y元,根據(jù)題意得出關于x和y的二元一次方程組,解方程組即可得出結論;(2)設購進甲種紀念品a件,根據(jù)題意列出關于x的一元一次不等式,解不等式得出a的取值范圍,即可得出結論;(3)找出總利潤關于購買甲種紀念品a件的函數(shù)關系式,由函數(shù)的增減性確定總利潤取最值時a的值,從而得出結論.詳解:(1)設購進甲種紀念品每件需x元,購進乙種紀念品每件需y元.由題意得:,解得:答:購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)設購進甲種紀念品a(a≥60)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論