




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年福建省三明市大田縣重點達標(biāo)名校中考數(shù)學(xué)模擬預(yù)測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,點P是以O(shè)為圓心,AB為直徑的半圓上的動點,AB=2,設(shè)弦AP的長為x,△APO的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是A.B.C.D.2.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.3.的值是A. B. C. D.4.若關(guān)于x、y的方程組有實數(shù)解,則實數(shù)k的取值范圍是()A.k>4 B.k<4 C.k≤4 D.k≥45.如果,那么()A. B. C. D.6.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差7.如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.108.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.59.下列計算正確的是()A.a(chǎn)3?a3=a9B.(a+b)2=a2+b2C.a(chǎn)2÷a2=0D.(a2)3=a610.關(guān)于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形二、填空題(本大題共6個小題,每小題3分,共18分)11.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點是坐標(biāo)原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D'處,則點C的對應(yīng)點C'的坐標(biāo)為_____.12.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm1.13.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側(cè)面積為_____.14.甲、乙、丙3名學(xué)生隨機排成一排拍照,其中甲排在中間的概率是_____.15.已知點、都在反比例函數(shù)的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.16.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.三、解答題(共8題,共72分)17.(8分)如圖,已知二次函數(shù)與x軸交于A、B兩點,A在B左側(cè),點C是點A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點P從O出發(fā),以每秒2個單位的速度沿x軸負半軸方向運動,Q從O出發(fā),以每秒個單位的速度沿OC方向運動,運動時間為t.直線PQ與拋物線的一個交點記為M,當(dāng)2PM=QM時,求t的值(直接寫出結(jié)果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF18.(8分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.19.(8分)先化簡,再求值:,其中,.20.(8分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.求證:DF是BF和CF的比例中項;在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.21.(8分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201822.(10分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結(jié)BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結(jié)BC并延長交半徑OM于點A,設(shè)OA=x,∠COM的正切值為y.(1)如圖2,當(dāng)AB⊥OM時,求證:AM=AC;(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)當(dāng)△OAC為等腰三角形時,求x的值.23.(12分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設(shè)計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)24.在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準備把“茶路”融入“絲路”,經(jīng)計算,他銷售10kgA級別和20kgB級別茶葉的利潤為4000元,銷售20kgA級別和10kgB級別茶葉的利潤為3500元.(1)求每千克A級別茶葉和B級別茶葉的銷售利潤;(2)若該經(jīng)銷商一次購進兩種級別的茶葉共200kg用于出口,其中B級別茶葉的進貨量不超過A級別茶葉的2倍,請你幫該經(jīng)銷商設(shè)計一種進貨方案使銷售總利潤最大,并求出總利潤的最大值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A?!窘馕觥咳鐖D,∵根據(jù)三角形面積公式,當(dāng)一邊OA固定時,它邊上的高最大時,三角形面積最大,∴當(dāng)PO⊥AO,即PO為三角形OA邊上的高時,△APO的面積y最大。此時,由AB=2,根據(jù)勾股定理,得弦AP=x=?!喈?dāng)x=時,△APO的面積y最大,最大面積為y=。從而可排除B,D選項。又∵當(dāng)AP=x=1時,△APO為等邊三角形,它的面積y=,∴此時,點(1,)應(yīng)在y=的一半上方,從而可排除C選項。故選A。2、A【解析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握圓周角定理與勾股定理的應(yīng)用.3、D【解析】
根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:,故選:D.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.4、C【解析】
利用根與系數(shù)的關(guān)系可以構(gòu)造一個兩根分別是x,y的一元二次方程,方程有實數(shù)根,用根的判別式≥0來確定k的取值范圍.【詳解】解:∵xy=k,x+y=4,∴根據(jù)根與系數(shù)的關(guān)系可以構(gòu)造一個關(guān)于m的新方程,設(shè)x,y為方程的實數(shù)根.解不等式得故選:C.【點睛】本題考查了一元二次方程的根的判別式的應(yīng)用和根與系數(shù)的關(guān)系.解題的關(guān)鍵是了解方程組有實數(shù)根的意義.5、B【解析】試題分析:根據(jù)二次根式的性質(zhì),由此可知2-a≥0,解得a≤2.故選B點睛:此題主要考查了二次根式的性質(zhì),解題關(guān)鍵是明確被開方數(shù)的符號,然后根據(jù)性質(zhì)可求解.6、D【解析】
解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.7、A【解析】
作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.8、D【解析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.9、D.【解析】試題分析:A、原式=a6,不符合題意;B、原式=a2+2ab+b2,不符合題意;C、原式=1,不符合題意;D、原式=a6,符合題意,故選D考點:整式的混合運算10、B【解析】
由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結(jié)論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).12、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點:扇形面積的計算.13、20π【解析】
利用勾股定理可求得圓錐的母線長,然后根據(jù)圓錐的側(cè)面積公式進行計算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側(cè)面積=×8π×5=20π,故答案為:20π.【點睛】本題主要考查了圓錐的側(cè)面積的計算方法.解題的關(guān)鍵是熟記圓錐的側(cè)面展開扇形的面積計算方法.14、【解析】列舉出所有情況,看甲排在中間的情況占所有情況的多少即為所求的概率.
根據(jù)題意,列出甲、乙、丙三個同學(xué)排成一排拍照的所有可能:
甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6種情況,
只有2種甲在中間,所以甲排在中間的概率是=.
故答案為;點睛:本題主要考查了列舉法求概率,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比,關(guān)鍵是列舉出同等可能的所有情況.15、-1【解析】
利用反比例函數(shù)的性質(zhì),即可得到反比例函數(shù)圖象在第一、三象限,進而得出,據(jù)此可得k的取值.【詳解】解:點、都在反比例函數(shù)的圖象上,,
在每個象限內(nèi),y隨著x的增大而增大,
反比例函數(shù)圖象在第一、三象限,
,
的值可以取等,答案不唯一
故答案為:.【點睛】本題考查反比例函數(shù)圖象上的點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.16、6【解析】
根據(jù)正弦函數(shù)的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數(shù)的定義是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解析】
(1)把A(-3,0),B(-1,0)代入二次函數(shù)解析式即可求出;由AC=OA知C點坐標(biāo)為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數(shù)解析式得解得∴y=-x2-4x-3;由AC=OA知C點坐標(biāo)為(-3,-3),∴直線OC的解析式y(tǒng)=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當(dāng)M(-3t,t)時:,∴當(dāng)M()時:,∴綜上:或(2)設(shè)A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設(shè)、,設(shè)EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF【點睛】此題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是熟知相似三角形的判定與性質(zhì)及正確作出輔助線進行求解.18、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,結(jié)合∠DCB=∠DAE可得出∠DCB=∠AEB,進而可得出AE∥DC、△AMF∽△CMD,根據(jù)相似三角形的性質(zhì)可得出=,根據(jù)AD∥BC,可得出△AMD∽△CMB,根據(jù)相似三角形的性質(zhì)可得出=,進而可得出=,即MD2=MF?MB;(2)設(shè)FM=a,則BF=3a,BM=4a.由(1)的結(jié)論可求出MD的長度,代入DF=DM+MF可得出DF的長度,由AD∥BC,可得出△AFD∽△△EFB,根據(jù)相似三角形的性質(zhì)可得出AF=EF,利用“對角線互相平分的四邊形是平行四邊形”即可證出四邊形ABED是平行四邊形.詳解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF?MB.(2)設(shè)FM=a,則BF=3a,BM=4a.由MD2=MF?MB,得:MD2=a?4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四邊形ABED是平行四邊形.點睛:本題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定、平行線的性質(zhì)以及矩形,解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)找出=、=;(2)牢記“對角線互相平分的四邊形是平行四邊形”.19、9【解析】
根據(jù)完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】當(dāng),時,原式【點睛】本題考查整式的化簡求值,解答本題的關(guān)鍵是明確整式化簡求值的方法.20、證明見解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.21、-1【解析】
原式利用乘方的意義,特殊角的三角函數(shù)值,零指數(shù)冪法則計算即可求出值.【詳解】解:原式=﹣4+1+1+1=﹣1.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.22、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結(jié)論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結(jié)論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結(jié)論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當(dāng)OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當(dāng)AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當(dāng)CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當(dāng)△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質(zhì),圓的有關(guān)性質(zhì),勾股定理,等腰三角形的性質(zhì),建立y關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理三基三嚴??荚囶}(附答案)
- 中醫(yī)考試題(含參考答案)
- 2025合作伙伴合同終止協(xié)議
- 2025年我愛我家房屋買賣合同樣本
- 農(nóng)業(yè)經(jīng)濟管理專業(yè)咨詢服務(wù)協(xié)議
- 單位臨時工雇傭協(xié)議
- 供應(yīng)鏈合作協(xié)議簽訂書
- 財務(wù)崗筆試題及答案大全
- 浙江國企招聘2025衢州市衢江區(qū)國有企業(yè)春季招聘4人筆試參考題庫附帶答案詳解
- 浙江國企招聘2025臺州市科創(chuàng)投資集團有限公司招聘10人筆試參考題庫附帶答案詳解
- 電力拖動自動控制系統(tǒng)-第五版 課后習(xí)題答案
- 夏日歷險夏日歷險電子書
- 中國傳統(tǒng)故事英文十二生肖二篇
- ETL認證的工廠審查
- 中國古代文學(xué)史 馬工程課件(下)05第七編明代文學(xué) 第四章 《水滸傳》
- 威尼斯商人英文劇本(法庭)
- (出讓合同)國有建設(shè)用地使用權(quán)先租后讓合同范本
- 上海中考英語小貓釣魚題型專項練習(xí)
- 教科版科學(xué)五年級下冊期末試卷測試卷(含答案解析)
- 鎂合金片狀、帶狀或條狀,含鎂>50%MSDS危險化學(xué)品安全技術(shù)說明書
- 預(yù)防校園欺凌主題班會課件優(yōu)秀
評論
0/150
提交評論