哈爾濱市第六十九中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第1頁
哈爾濱市第六十九中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第2頁
哈爾濱市第六十九中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第3頁
哈爾濱市第六十九中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第4頁
哈爾濱市第六十九中學(xué)2024屆中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

哈爾濱市第六十九中學(xué)2024屆中考一模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在射線AB上順次取兩點(diǎn)C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為α(其中0°<α<45°),旋轉(zhuǎn)后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點(diǎn)G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關(guān)系的是()A. B. C. D.2.2018年我市財(cái)政計(jì)劃安排社會(huì)保障和公共衛(wèi)生等支出約1800000000元支持民生幸福工程,數(shù)1800000000用科學(xué)記數(shù)法表示為()A.18×108B.1.8×108C.1.8×109D.0.18×10103.一艘在南北航線上的測量船,于A點(diǎn)處測得海島B在點(diǎn)A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點(diǎn)時(shí),測得海島B在C點(diǎn)的北偏東15°方向,那么海島B離此航線的最近距離是()(結(jié)果保留小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里4.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.15.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)6.下列運(yùn)算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=67.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<48.矩形ABCD與CEFG,如圖放置,點(diǎn)B,C,E共線,點(diǎn)C,D,G共線,連接AF,取AF的中點(diǎn)H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.9.如圖,AB∥CD,點(diǎn)E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數(shù)是()A.70° B.60° C.55° D.50°10.從一個(gè)邊長為3cm的大立方體挖去一個(gè)邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.新定義[a,b]為一次函數(shù)(其中a≠0,且a,b為實(shí)數(shù))的“關(guān)聯(lián)數(shù)”,若“關(guān)聯(lián)數(shù)”[3,m+2]所對應(yīng)的一次函數(shù)是正比例函數(shù),則關(guān)于x的方程1x-1+112.不等式組的解集是_____;13.若x=-1,則x2+2x+1=__________.14.若x2+kx+81是完全平方式,則k的值應(yīng)是________.15.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車到達(dá)A地時(shí),甲車已在C地休息了_____小時(shí).16.△ABC中,∠A、∠B都是銳角,若sinA=,cosB=,則∠C=_____.17.如圖,⊙C經(jīng)過原點(diǎn)且與兩坐標(biāo)軸分別交于點(diǎn)A與點(diǎn)B,點(diǎn)B的坐標(biāo)為(﹣,0),M是圓上一點(diǎn),∠BMO=120°.⊙C圓心C的坐標(biāo)是_____.三、解答題(共7小題,滿分69分)18.(10分)計(jì)算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣119.(5分)在平面直角坐標(biāo)系xOy中,對于P,Q兩點(diǎn)給出如下定義:若點(diǎn)P到兩坐標(biāo)軸的距離之和等于點(diǎn)Q到兩坐標(biāo)軸的距離之和,則稱P,Q兩點(diǎn)為同族點(diǎn).下圖中的P,Q兩點(diǎn)即為同族點(diǎn).(1)已知點(diǎn)A的坐標(biāo)為(﹣3,1),①在點(diǎn)R(0,4),S(2,2),T(2,﹣3)中,為點(diǎn)A的同族點(diǎn)的是;②若點(diǎn)B在x軸上,且A,B兩點(diǎn)為同族點(diǎn),則點(diǎn)B的坐標(biāo)為;(2)直線l:y=x﹣3,與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,①M(fèi)為線段CD上一點(diǎn),若在直線x=n上存在點(diǎn)N,使得M,N兩點(diǎn)為同族點(diǎn),求n的取值范圍;②M為直線l上的一個(gè)動(dòng)點(diǎn),若以(m,0)為圓心,為半徑的圓上存在點(diǎn)N,使得M,N兩點(diǎn)為同族點(diǎn),直接寫出m的取值范圍.20.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時(shí)點(diǎn)C的坐標(biāo);(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個(gè)單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)21.(10分)如圖,一根電線桿PQ直立在山坡上,從地面的點(diǎn)A看,測得桿頂端點(diǎn)P的仰角為45°,向前走6m到達(dá)點(diǎn)B,又測得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別為60°和30°,求電線桿PQ的高度.(結(jié)果保留根號).22.(10分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當(dāng)PB∥CD時(shí),點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+∠CBO=180°,求Q點(diǎn)坐標(biāo).23.(12分)如圖,C是⊙O上一點(diǎn),點(diǎn)P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.24.(14分)如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)和,雙曲線經(jīng)過點(diǎn)B.(1)求直線和雙曲線的函數(shù)表達(dá)式;(2)點(diǎn)C從點(diǎn)A出發(fā),沿過點(diǎn)A與y軸平行的直線向下運(yùn)動(dòng),速度為每秒1個(gè)單位長度,點(diǎn)C的運(yùn)動(dòng)時(shí)間為t(0<t<12),連接BC,作BD⊥BC交x軸于點(diǎn)D,連接CD,①當(dāng)點(diǎn)C在雙曲線上時(shí),求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當(dāng)時(shí),請直接寫出t的值.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)、相似等知識,解題的關(guān)鍵是根據(jù)已知得出△ACG∽△ADH.2、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】解:1800000000=1.8×109,故選:C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.3、B【解析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BE,AD=DE,設(shè)BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設(shè)BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【點(diǎn)睛】本題考查了三角形內(nèi)角和定理與等腰直角三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握三角形內(nèi)角和定理與等腰直角三角形的性質(zhì).4、C【解析】

延長BC′交AB′于D,根據(jù)等邊三角形的性質(zhì)可得BD⊥AB′,利用勾股定理列式求出AB,然后根據(jù)等邊三角形的性質(zhì)和等腰直角三角形的性質(zhì)求出BD、C′D,然后根據(jù)BC′=BD-C′D計(jì)算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點(diǎn)睛】熟練掌握勾股定理以及由旋轉(zhuǎn)60°得到△ABB′是等邊三角形是解本題的關(guān)鍵.5、C【解析】

分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【詳解】如圖,分OP=AP(1點(diǎn)),OA=AP(1點(diǎn)),OA=OP(2點(diǎn))三種情況討論.∴以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有4個(gè).故選C.【點(diǎn)睛】本題考查了等腰三角形的判定和坐標(biāo)與圖形的性質(zhì),主要考查學(xué)生的動(dòng)手操作能力和理解能力,注意不要漏解.6、D【解析】

運(yùn)用正確的運(yùn)算法則即可得出答案.【詳解】A、應(yīng)該為a5,錯(cuò)誤;B、為2,錯(cuò)誤;C、為4,錯(cuò)誤;D、正確,所以答案選擇D項(xiàng).【點(diǎn)睛】本題考查了四則運(yùn)算法則,熟悉掌握是解決本題的關(guān)鍵.7、D【解析】

不等式先展開再移項(xiàng)即可解答.【詳解】解:不等式3x<2(x+2),展開得:3x<2x+4,移項(xiàng)得:3x-2x<4,解之得:x<4.故答案選D.【點(diǎn)睛】本題考查了解一元一次不等式,解題的關(guān)鍵是熟練的掌握解一元一次不等式的步驟.8、C【解析】分析:延長GH交AD于點(diǎn)P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點(diǎn)P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點(diǎn),∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點(diǎn)睛:本題主要考查矩形的性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定與性質(zhì)、矩形的性質(zhì)、勾股定理等知識點(diǎn).9、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點(diǎn):平行線的性質(zhì).10、C【解析】

左視圖就是從物體的左邊往右邊看.小正方形應(yīng)該在右上角,故B錯(cuò)誤,看不到的線要用虛線,故A錯(cuò)誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應(yīng)該是大正方形,故D錯(cuò)誤,所以C正確.故此題選C.二、填空題(共7小題,每小題3分,滿分21分)11、53【解析】試題分析:根據(jù)“關(guān)聯(lián)數(shù)”[3,m+2]所對應(yīng)的一次函數(shù)是正比例函數(shù),得到y(tǒng)=3x+m+2為正比例函數(shù),即m+2=0,解得:m=-2,則分式方程為1x-1去分母得:2-(x-1)=2(x-1),去括號得:2-x+1=2x-2,解得:x=53經(jīng)檢驗(yàn)x=53考點(diǎn):1.一次函數(shù)的定義;2.解分式方程;3.正比例函數(shù)的定義.12、x≤1【解析】分析:分別求出不等式組中兩個(gè)不等式的解集,找出解集的公共部分即可確定出不等式組的解集.詳解:,由①得:x由②得:.則不等式組的解集為:x.故答案為x≤1.點(diǎn)睛:本題主要考查了解一元一次不等式組.13、2【解析】

先利用完全平方公式對所求式子進(jìn)行變形,然后代入x的值進(jìn)行計(jì)算即可.【詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【點(diǎn)睛】本題考查了代數(shù)式求值,涉及了因式分解,二次根式的性質(zhì)等,熟練掌握相關(guān)知識是解題的關(guān)鍵.14、±1【解析】試題分析:利用完全平方公式的結(jié)構(gòu)特征判斷即可確定出k的值.解:∵x2+kx+81是完全平方式,∴k=±1.故答案為±1.考點(diǎn):完全平方式.15、2.1.【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達(dá)A地時(shí)所用的時(shí)間,從而可以解答本題.【詳解】由題意可得,甲車到達(dá)C地用時(shí)4個(gè)小時(shí),乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達(dá)A地用時(shí)為:(200+240)÷80+1=6.1(小時(shí)),當(dāng)乙車到達(dá)A地時(shí),甲車已在C地休息了:6.1﹣4=2.1(小時(shí)),故答案為:2.1.【點(diǎn)睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、60°.【解析】

先根據(jù)特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),再根據(jù)三角形內(nèi)角和定理求出∠C即可作出判斷.【詳解】∵△ABC中,∠A、∠B都是銳角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案為60°.【點(diǎn)睛】本題考查的是特殊角的三角函數(shù)值及三角形內(nèi)角和定理,比較簡單.17、(,)【解析】

連接AB,OC,由圓周角定理可知AB為⊙C的直徑,再根據(jù)∠BMO=120°可求出∠BAO以及∠BCO的度數(shù),在Rt△COD中,解直角三角形即可解決問題;【詳解】連接AB,OC,∵∠AOB=90°,∴AB為⊙C的直徑,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,過C作CD⊥OB于D,則OD=OB,∠DCB=∠DCO=60°,∵B(-,0),∴BD=OD=在Rt△COD中.CD=OD?tan30°=,∴C(-,),故答案為C(-,).【點(diǎn)睛】本題考查的是圓心角、弧、弦的關(guān)系及圓周角定理、直角三角形的性質(zhì)、坐標(biāo)與圖形的性質(zhì)及特殊角的三角函數(shù)值,根據(jù)題意畫出圖形,作出輔助線,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、1【解析】

本題涉及絕對值、特殊角的三角函數(shù)值、負(fù)指數(shù)冪、二次根式化簡、乘方5個(gè)考點(diǎn),先針對每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果即可.【詳解】解:原式=2﹣+2×﹣3+1=1.【點(diǎn)睛】本題考查實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見的計(jì)算題型,解決此類題目的關(guān)鍵是熟練掌握絕對值、特殊角的三角函數(shù)值、負(fù)指數(shù)冪、二次根式化簡、乘方等考點(diǎn)的運(yùn)算.19、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解析】

(1)∵點(diǎn)A的坐標(biāo)為(?2,1),∴2+1=4,點(diǎn)R(0,4),S(2,2),T(2,?2)中,0+4=4,2+2=4,2+2=5,∴點(diǎn)A的同族點(diǎn)的是R,S;故答案為R,S;②∵點(diǎn)B在x軸上,∴點(diǎn)B的縱坐標(biāo)為0,設(shè)B(x,0),則|x|=4,∴x=±4,∴B(?4,0)或(4,0);故答案為(?4,0)或(4,0);(2)①由題意,直線與x軸交于C(2,0),與y軸交于D(0,).點(diǎn)M在線段CD上,設(shè)其坐標(biāo)為(x,y),則有:,,且.點(diǎn)M到x軸的距離為,點(diǎn)M到y(tǒng)軸的距離為,則.∴點(diǎn)M的同族點(diǎn)N滿足橫縱坐標(biāo)的絕對值之和為2.即點(diǎn)N在右圖中所示的正方形CDEF上.∵點(diǎn)E的坐標(biāo)為(,0),點(diǎn)N在直線上,∴.②如圖,設(shè)P(m,0)為圓心,為半徑的圓與直線y=x?2相切,∴PC=2,∴OP=1,觀察圖形可知,當(dāng)m≥1時(shí),若以(m,0)為圓心,為半徑的圓上存在點(diǎn)N,使得M,N兩點(diǎn)為同族點(diǎn),再根據(jù)對稱性可知,m≤也滿足條件,∴滿足條件的m的范圍:m≤或m≥120、(1),;(2)點(diǎn)C的坐標(biāo)為或;(3)2.【解析】試題分析:(1)由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點(diǎn)B的坐標(biāo),由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AB的解析式;

(2)設(shè)點(diǎn)C的坐標(biāo)為(m,0),令直線AB與x軸的交點(diǎn)為D,根據(jù)三角形的面積公式結(jié)合△ABC的面積是8,可得出關(guān)于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點(diǎn)C的坐標(biāo);

(3)設(shè)點(diǎn)E的橫坐標(biāo)為1,點(diǎn)F的橫坐標(biāo)為6,點(diǎn)M、N分別對應(yīng)點(diǎn)E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點(diǎn)E、F、M、N的坐標(biāo),根據(jù)EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質(zhì)即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點(diǎn)A(4,3)在反比例函數(shù)y=的圖象上,∴a=4×3=12,∴反比例函數(shù)解析式為y=;∵OA==1,OA=OB,點(diǎn)B在y軸負(fù)半軸上,∴點(diǎn)B(0,﹣1).把點(diǎn)A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數(shù)的解析式為y=2x﹣1.(2)設(shè)點(diǎn)C的坐標(biāo)為(m,0),令直線AB與x軸的交點(diǎn)為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當(dāng)△ABC的面積是8時(shí),點(diǎn)C的坐標(biāo)為(,0)或(,0).(3)設(shè)點(diǎn)E的橫坐標(biāo)為1,點(diǎn)F的橫坐標(biāo)為6,點(diǎn)M、N分別對應(yīng)點(diǎn)E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【點(diǎn)睛】運(yùn)用了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、待定系數(shù)法求函數(shù)解析式、三角形的面積以及平行四邊形的面積,解題的關(guān)鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)找出關(guān)于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時(shí),巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數(shù)形結(jié)合的重要性.21、(6+)米【解析】

根據(jù)已知的邊和角,設(shè)CQ=x,BC=QC=x,PC=BC=3x,根據(jù)PQ=BQ列出方程求解即可.【詳解】解:延長PQ交地面與點(diǎn)C,由題意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,設(shè)CQ=x,則在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,則PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,則電線桿PQ高為(6+)米.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對解直角三角形的理解,掌握解直角三角形的方法是解題的關(guān)鍵.22、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】

(1)根據(jù)題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據(jù)B的橫坐標(biāo)可求B點(diǎn)坐標(biāo),把A,B坐標(biāo)代入直線解析式,可求k,b(2)過P點(diǎn)作PN⊥OA于N,交AB于M,過B點(diǎn)作BH⊥PN,設(shè)出P點(diǎn)坐標(biāo),可求出N點(diǎn)坐標(biāo),即可以用t表示S.(3)由PB∥CD,可求P點(diǎn)坐標(biāo),連接OP,交AC于點(diǎn)R,過P點(diǎn)作PN⊥OA于M,交AB于N,過D點(diǎn)作DT⊥OA于T,根據(jù)P的坐標(biāo),可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據(jù)拋物線的對稱性可知R在對稱軸上.設(shè)Q點(diǎn)坐標(biāo),根據(jù)△BOR∽△PQS,可求Q點(diǎn)坐標(biāo).【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當(dāng)x=﹣1時(shí),y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數(shù)解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點(diǎn)作PN⊥OA于N,交AB于M,過B點(diǎn)作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當(dāng)x=t時(shí),yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當(dāng)x=﹣2時(shí),y=4即D(﹣2,4),當(dāng)x=0時(shí),y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當(dāng)y=3時(shí),x=﹣3,∴P(﹣3,3),連接OP,交AC于點(diǎn)R,過P點(diǎn)作PN⊥OA于M,交AB于N,過D點(diǎn)作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過點(diǎn)Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設(shè)Q點(diǎn)的橫坐標(biāo)是m,當(dāng)x=m時(shí)y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當(dāng)x=﹣時(shí),y=,Q(﹣,).【點(diǎn)睛】本題考查二次函數(shù)綜合題、一次函數(shù)的應(yīng)用、相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識,學(xué)會(huì)添加常用輔助線,構(gòu)造特殊四邊形解決問題.23、(1)見解析;(2)12【解析】

(1)連接OC、BC,根據(jù)題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結(jié)論.(2)先根據(jù)題意證明出△PBC∽△PCA,再根據(jù)相似三角形的性質(zhì)得出邊的比值,由此可得出結(jié)論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切線.(2)∵AB是直徑∴∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論