2024屆山東省沂南縣重點中學中考數學模試卷含解析_第1頁
2024屆山東省沂南縣重點中學中考數學模試卷含解析_第2頁
2024屆山東省沂南縣重點中學中考數學模試卷含解析_第3頁
2024屆山東省沂南縣重點中學中考數學模試卷含解析_第4頁
2024屆山東省沂南縣重點中學中考數學模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省沂南縣重點中學中考數學模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列方程有實數根的是()A. B.C.x+2x?1=0 D.2.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x13.《語文課程標準》規(guī)定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1044.我國平均每平方千米的土地一年從太陽得到的能量,相當于燃燒130000000kg的煤所產生的能量.把130000000kg用科學記數法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg5.最小的正整數是()A.0B.1C.﹣1D.不存在6.若,則3(x-2)2A.﹣6B.6C.18D.307.如圖,在平面直角坐標系中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B、C在反比例函數y=(x>0)的圖象上,則△OAB的面積等于()A.2 B.3 C.4 D.68.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構成一個軸對稱圖形的概率是()A. B. C. D.9.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.10.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統(tǒng)計如下表,根據表中的信息判斷,下列結論中錯誤的是()成績(分)3029282618人數(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數為29.4分C.該班學生這次考試成績的眾數為30分D.該班學生這次考試成績的中位數為28分11.有15位同學參加歌詠比賽,所得的分數互不相同,取得分前8位同學進入決賽.某同學知道自己的分數后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數 B.中位數 C.眾數 D.方差12.如圖,矩形ABCD中,AB=10,BC=5,點E,F,G,H分別在矩形ABCD各邊上,且AE=CG,BF=DH,則四邊形EFGH周長的最小值為()A.5 B.10 C.10 D.15二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一粒米的質量是1.111121千克,這個數字用科學記數法表示為__________.14.反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關系為__________.(用“<”連接)15.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.16.若點與點關于原點對稱,則______.17.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在區(qū)域的可能性最大(填A或B或C).18.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某商店老板準備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60元.(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;(2)若B型號足球數量不少于A型號足球數量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?20.(6分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.21.(6分)化簡分式,并從0、1、2、3這四個數中取一個合適的數作為x的值代入求值.22.(8分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.23.(8分)如圖:求作一點P,使,并且使點P到的兩邊的距離相等.24.(10分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想圖1中,線段PM與PN的數量關系是,位置關系是;(2)探究證明把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.25.(10分)某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結合以上信息,回答下列問題:求服裝項目的權數及普通話項目對應扇形的圓心角大小;求李明在選拔賽中四個項目所得分數的眾數和中位數;根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.26.(12分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數圖象的伴侶正方形.如圖,正方形ABCD是一次函數y=x+1圖象的其中一個伴侶正方形.(1)若某函數是一次函數y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數是反比例函數(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數圖象上,求m的值及反比例函數解析式;(3)若某函數是二次函數y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數是奇數還是偶數?_____.(本小題只需直接寫出答案)27.(12分)太陽能光伏建筑是現代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:根據方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數根,故本選項符合題意;D.解分式方程=,可得x=1,經檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.2、D【解析】

先根據反比例函數的解析式判斷出函數圖象所在的象限及在每一象限內函數的增減性,再根據y1<0<y2<y3判斷出三點所在的象限,故可得出結論.【詳解】解:∵反比例函數y=﹣中k=﹣1<0,∴此函數的圖象在二、四象限,且在每一象限內y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【點睛】本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限是解答此題的關鍵.3、C【解析】

科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】260萬=2600000=.故選C.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.4、D【解析】試題分析:科學計數法是指:a×,且,n為原數的整數位數減一.5、B【解析】

根據最小的正整數是1解答即可.【詳解】最小的正整數是1.故選B.【點睛】本題考查了有理數的認識,關鍵是根據最小的正整數是1解答.6、B【解析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點:整式的混合運算—化簡求值;整體思想;條件求值.7、B【解析】

作BD⊥x軸于D,CE⊥x軸于E,∴BD∥CE,∴,∵OC是△OAB的中線,∴,設CE=x,則BD=2x,∴C的橫坐標為,B的橫坐標為,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA?BD=×=1.故選B.點睛:本題是反比例函數與幾何的綜合題,熟知反比例函數的圖象上點的特征和相似三角形的判定和性質是解題的關鍵.8、B【解析】解:∵根據軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是:.故選B.9、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;故選C.10、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數為30分,故D錯誤;11、B【解析】

由中位數的概念,即最中間一個或兩個數據的平均數;可知15人成績的中位數是第8名的成績.根據題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】解:由于15個人中,第8名的成績是中位數,故小方同學知道了自己的分數后,想知道自己能否進入決賽,還需知道這十五位同學的分數的中位數.故選B.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數、中位數、眾數的意義.反映數據集中程度的統(tǒng)計量有平均數、中位數、眾數等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當的運用.12、B【解析】作點E關于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,過點G作GG′⊥AB于點G′,如圖所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四邊形EFGH=2E′G=10,故選B.【點睛】本題考查了軸對稱-最短路徑問題,矩形的性質等,根據題意正確添加輔助線是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.1×【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×11-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的1的個數所決定.【詳解】解:1.111121=2.1×11-2.

故答案為:2.1×11-2.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×11-n,其中1≤|a|<11,n由原數左邊起第一個不為零的數字前面的1的個數所決定.14、y2<y1<y1.【解析】

先根據反比例函數的增減性判斷出2-m的符號,再根據反比例函數的性質判斷出此函數圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,∴2?m>0,∴此函數的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數圖像上點的坐標特征,解題的關鍵是熟練的掌握列反比例函數圖像上點的坐標特征.15、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.16、1【解析】∵點P(m,﹣2)與點Q(3,n)關于原點對稱,∴m=﹣3,n=2,則(m+n)2018=(﹣3+2)2018=1,故答案為1.17、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率18、1【解析】

∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)A型足球進了40個,B型足球進了60個;(2)當x=60時,y最小=4800元.【解析】

(1)設A型足球x個,則B型足球(100-x)個,根據該店老板共花費了5200元列方程求解即可;(2)設進貨款為y元,根據題意列出函數關系式,根據B型號足球數量不少于A型號足球數量的求出x的取值范圍,然后根據一次函數的性質求解即可.【詳解】解:(1)設A型足球x個,則B型足球(100-x)個,∴40x+60(100-x)=5200,解得:x=40,∴100-x=100-40=60個,答:A型足球進了40個,B型足球進了60個.(2)設A型足球x個,則B型足球(100-x)個,100-x≥,解得:x≤60,設進貨款為y元,則y=40x+60(100-x)=-20x+6000,∵k=-20,∴y隨x的增大而減小,∴當x=60時,y最小=4800元.【點睛】本題考查了一元一次方程的應用,一次函數的應用,仔細審題,找出解決問題所需的數量關系是解答本題的關鍵.20、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.21、x取0時,為1或x取1時,為2【解析】試題分析:利用分式的運算,先對分式化簡單,再選擇使分式有意義的數代入求值即可.試題解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,當x=0時,原式=1.或當x=1時,原式=2.22、證明見解析.【解析】

根據在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點睛】本題利用了在同圓中等弦對的弧相等,等弧對的弦,圓周角相等,等量減去等量仍是等量求解.23、見解析【解析】

利用角平分線的作法以及線段垂直平分線的作法分別得出進而求出其交點即可.【詳解】如圖所示:P點即為所求.【點睛】本題主要考查了復雜作圖,熟練掌握角平分線以及線段垂直平分線的作法是解題的關鍵.24、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結論.方法2、先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,即可.【詳解】解:(1)∵點P,N是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時,△PMN的面積最大,∴DE∥BC且DE在頂點A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時,△PMN面積最大,∴點D在BA的延長線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【點睛】本題考查旋轉中的三角形,關鍵在于對三角形的所有知識點熟練掌握.25、(1)服裝項目的權數是10%,普通話項目對應扇形的圓心角是72°;(2)眾數是85,中位數是82.5;(3)選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,理由見解析.【解析】

(1)根據扇形圖用1減去其它項目的權重可求得服裝項目的權重,用360度乘以普通話項目的權重即可求得普通話項目對應扇形的圓心角大小;(2)根據統(tǒng)計表中的數據可以求得李明在選拔賽中四個項目所得分數的眾數和中位數;(3)根據統(tǒng)計圖和統(tǒng)計表中的數據可以分別計算出李明和張華的成績,然后比較大小,即可解答本題.【詳解】(1)服裝項目的權數是:1﹣20%﹣30%﹣40%=10%,普通話項目對應扇形的圓心角是:360°×20%=72°;(2)明在選拔賽中四個項目所得分數的眾數是85,中位數是:(80+85)÷2=82.5;(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演講成績好,故選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽.【點睛】本題考查了扇形統(tǒng)計圖、中位數、眾數、加權平均數,明確題意,結合統(tǒng)計表和統(tǒng)計圖找出所求問題需要的條件,運用數形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論