2024屆四川省廣安鄰水縣聯(lián)考中考五模數(shù)學試題含解析_第1頁
2024屆四川省廣安鄰水縣聯(lián)考中考五模數(shù)學試題含解析_第2頁
2024屆四川省廣安鄰水縣聯(lián)考中考五模數(shù)學試題含解析_第3頁
2024屆四川省廣安鄰水縣聯(lián)考中考五模數(shù)學試題含解析_第4頁
2024屆四川省廣安鄰水縣聯(lián)考中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省廣安鄰水縣聯(lián)考中考五模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=2.如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當點G運動時,設AD=y,BC=x,則y與x所滿足的函數(shù)關系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)3.下列關于x的方程中一定沒有實數(shù)根的是()A. B. C. D.4.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元5.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=906.如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續(xù)翻轉2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)7.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤8.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.169.點P(4,﹣3)關于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限10.如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)二、填空題(本大題共6個小題,每小題3分,共18分)11.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.12.如圖:圖象①②③均是以P0為圓心,1個單位長度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時平移,每次移動一個單位長度,第一次移動后圖形①②③的圓心依次為P1P2P3,第二次移動后圖形①②③的圓心依次為P4P5P6…,依此規(guī)律,P0P2018=_____個單位長度.13.如果點P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).14.如果一個正多邊形每一個內角都等于144°,那么這個正多邊形的邊數(shù)是____.15.寫出一個大于3且小于4的無理數(shù):___________.16.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經過菱形OABC中心E點,則k的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.18.(8分)已知關于x,y的二元一次方程組的解為,求a、b的值.19.(8分)隨著社會經濟的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學興趣小組隨機抽取了我市某單位部分職工進行調查,對職工購車情況分4類(A:車價40萬元以上;B:車價在20—40萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中信息解答下列問題:(1)調查樣本人數(shù)為__________,樣本中B類人數(shù)百分比是_______,其所在扇形統(tǒng)計圖中的圓心角度數(shù)是________;(2)把條形統(tǒng)計圖補充完整;(3)該單位甲、乙兩個科室中未購車人數(shù)分別為2人和3人,現(xiàn)從中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.20.(8分)如圖,已知,.求證.21.(8分)解分式方程:-1=22.(10分)如圖,在矩形ABCD中,E是邊BC上的點,AE=BC,DF⊥AE,垂足為F,連接DE.求證:AB=DF.23.(12分)某工廠計劃生產,兩種產品共10件,其生產成本和利潤如下表.種產品種產品成本(萬元件)25利潤(萬元件)13(1)若工廠計劃獲利14萬元,問,兩種產品應分別生產多少件?(2)若工廠計劃投入資金不多于44萬元,且獲利多于22萬元,問工廠有哪幾種生產方案?24.某街道需要鋪設管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關系圖象.(1)直接寫出點的坐標;(2)求線段所對應的函數(shù)解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.

y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.

y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.

y=是組合函數(shù),故此選項錯誤.故選B.2、C【解析】

延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項.【詳解】延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質,切線長定理,直角三角形全等的判定與性質,反比例函數(shù)的性質,以及等腰三角形的性質,做此題是注意靈活運用所學知識.3、B【解析】

根據(jù)根的判別式的概念,求出△的正負即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數(shù)根,B.,△=36-144=-1080,∴原方程沒有實數(shù)根,C.,,△=10,∴原方程有兩個不相等的實數(shù)根,D.,△=m2+80,∴原方程有兩個不相等的實數(shù)根,故選B.【點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.4、C【解析】

用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.5、A【解析】試題分析:設某種書包原價每個x元,根據(jù)題意列出方程解答即可.設某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.6、B【解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉后的圖形,如圖所示.由圖可知:每翻轉6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標為(1.5,),∴B3的坐標為(1.5+1322,),故選B.點睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉6次,圖形向右平移2”是解題的關鍵.7、D【解析】

根據(jù)實數(shù)的運算法則即可一一判斷求解.【詳解】①有理數(shù)的0次冪,當a=0時,a0=0;②為同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,正確;③中2–2=,原式錯誤;④為有理數(shù)的混合運算,正確;⑤為合并同類項,正確.故選D.8、B【解析】

根據(jù)矩形和折疊性質可得△EHC≌△FBC,從而可得BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質、矩形的性質、三角形全等的判定與性質、勾股定理等,綜合性較強,熟練掌握各相關的性質定理與判定定理是解題的關鍵.9、C【解析】

由題意得點P的坐標為(﹣4,3),根據(jù)象限內點的符號特點可得點P1的所在象限.【詳解】∵設P(4,﹣3)關于原點的對稱點是點P1,∴點P1的坐標為(﹣4,3),∴點P1在第二象限.故選C【點睛】本題主要考查了兩點關于原點對稱,這兩點的橫縱坐標均互為相反數(shù);符號為(﹣,+)的點在第二象限.10、C【解析】

本題是規(guī)律型:點的坐標;坐標與圖形變化-旋轉,正六邊形ABCDEF一共有6條邊,即6次一循環(huán);因為2017÷6=336余1,點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,所以點F滾動2107次時的縱坐標與相同,橫坐標的次數(shù)加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環(huán);∴2017÷6=336余1,∴點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,∴點F滾動2107次時的縱坐標與相同,橫坐標的次數(shù)加1,∴點F滾動2107次時的橫坐標為2017+1=2018,縱坐標為,∴點F滾動2107次時的坐標為(2018,),故選C.【點睛】本題考查坐標與圖形的變化,規(guī)律型:點的坐標,解題關鍵是學會從特殊到一般的探究方法,是中考??碱}型.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】

根據(jù)正弦函數(shù)的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數(shù)的定義是解題的關鍵.12、1【解析】

根據(jù)P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移動一次,圓心離中心的距離增加1個單位,依據(jù)2018=3×672+2,即可得到點P2018在正南方向上,P0P2018=672+1=1.【詳解】由圖可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴點P2018在正南方向上,∴P0P2018=672+1=1,故答案為1.【點睛】本題主要考查了坐標與圖形變化,應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.13、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數(shù)的性質,點M、N在對稱軸的右側,y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點睛:本題考查了二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質,求得對稱軸,掌握二次函數(shù)圖象的性質解決問題.14、1【解析】

設正多邊形的邊數(shù)為n,然后根據(jù)多邊形的內角和公式列方程求解即可.【詳解】解:設正多邊形的邊數(shù)為n,由題意得,=144°,解得n=1.故答案為1.【點睛】本題考查了多邊形的內角與外角,熟記公式并準確列出方程是解題的關鍵.15、如等,答案不唯一.【解析】

本題考查無理數(shù)的概念.無限不循環(huán)小數(shù)叫做無理數(shù).介于和之間的無理數(shù)有無窮多個,因為,故而9和16都是完全平方數(shù),都是無理數(shù).16、8【解析】

根據(jù)反比例函數(shù)的性質結合點的坐標利用勾股定理解答.【詳解】解:菱形OABC的頂點A的坐標為(-3,-4),OA=OC=則點B的橫坐標為-5-3=-8,點B的坐標為(-8,-4),點C的坐標為(-5,0)則點E的坐標為(-4,-2),將點E的坐標帶入y=(x<0)中,得k=8.給答案為:8.【點睛】此題重點考察學生對反比例函數(shù)性質的理解,掌握坐標軸點的求法和菱形性質是解題的關鍵.三、解答題(共8題,共72分)17、(1)拋物線解析式為,頂點為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對稱軸解析式,可用頂點式二次函數(shù)通式來設拋物線,然后將A、B兩點坐標代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點的橫坐標,用拋物線的解析式求出E點的縱坐標,那么E點縱坐標的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關系式進而可得出S與x的函數(shù)關系式.(3)①將S=24代入S,x的函數(shù)關系式中求出x的值,即可得出E點的坐標和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應該是等腰直角三角形,即E點的坐標為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點.【詳解】(1)由拋物線的對稱軸是,可設解析式為.把A、B兩點坐標代入上式,得解之,得故拋物線解析式為,頂點為(2)∵點在拋物線上,位于第四象限,且坐標適合,∴y<0,即-y>0,-y表示點E到OA的距離.∵OA是的對角線,∴.因為拋物線與軸的兩個交點是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當S=24時,即.化簡,得解之,得故所求的點E有兩個,分別為E1(3,-4),E2(4,-4).點E1(3,-4)滿足OE=AE,所以是菱形;點E2(4,-4)不滿足OE=AE,所以不是菱形.②當OA⊥EF,且OA=EF時,是正方形,此時點E的坐標只能是(3,-3).而坐標為(3,-3)的點不在拋物線上,故不存在這樣的點E,使為正方形.18、或【解析】

把代入二元一次方程組得到關于a,b的方程組,經過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,

由①得:a=1+b,

把a=1+b代入②,整理得:

b2+b-2=0,

解得:b=-2或b=1,

把b=-2代入①得:a+2=1,

解得:a=-1,

把b=1代入①得:

a-1=1,

解得:a=2,

即或.【點睛】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.19、(1)50,20%,72°.(2)圖形見解析;(3)選出的2人來自不同科室的概率=35【解析】試題分析:(1)根據(jù)調查樣本人數(shù)=A類的人數(shù)除以對應的百分比.樣本中B類人數(shù)百分比=B類人數(shù)除以總人數(shù),B類人數(shù)所在扇形統(tǒng)計圖中的圓心角度數(shù)=B類人數(shù)的百分比×360°.(2)先求出樣本中B類人數(shù),再畫圖.(3)畫樹狀圖并求出選出的2人來自不同科室的概率.試題解析:(1)調查樣本人數(shù)為4÷8%=50(人),樣本中B類人數(shù)百分比(50﹣4﹣28﹣8)÷50=20%,B類人數(shù)所在扇形統(tǒng)計圖中的圓心角度數(shù)是20%×360°=72°;(2)如圖,樣本中B類人數(shù)=50﹣4﹣28﹣8=10(人);(3)畫樹狀圖為:共有20種可能的結果數(shù),其中選出選出的2人來自不同科室占12種,所以選出的2人來自不同科室的概率=1220考點:1.條形統(tǒng)計圖2.扇形統(tǒng)計圖3.列表法與樹狀圖法.20、見解析【解析】

根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結論.【詳解】證明:∵∠ABD=∠DCA,∠DBC=∠ACB

∴∠ABD+∠DBC=∠DCA+∠ACB

即∠ABC=∠DCB

在△ABC和△DCB中

∴△ABC≌△DCB(ASA)

∴AB=DC【點睛】本題主要考查學生對全等三角形的判定與性質的理解和掌握,證明此題的關鍵是求證△ABC≌△DCB.難度不大,屬于基礎題.21、7【解析】

根據(jù)分式的性質及等式的性質進行去分母,去括號,移項,合并同類項,未知數(shù)系數(shù)化為1即可.【詳解】-1=3-(x-3)=-13-x+3=-1x=7【點睛】此題主要考查分式方程的求解,解題的關鍵是正確去掉分母.22、詳見解析.【解析】

根據(jù)矩形性質推出BC=AD=AE,AD∥BC,根據(jù)平行線性質推出∠DAE=∠AEB,根據(jù)AAS證出△ABE≌△DFA即可.【詳解】證明:在矩形ABCD中∵BC=AD,AD∥BC,∠B=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論