版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省南昌市東湖區(qū)第二中學(xué)2024年高三二診模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.2019年10月17日是我國(guó)第6個(gè)“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動(dòng),現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種2.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,3.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件4.若,,則的值為()A. B. C. D.5.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.6.如圖,正三棱柱各條棱的長(zhǎng)度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形7.函數(shù)在上的圖象大致為()A. B.C. D.8.設(shè),則()A. B. C. D.9.已知向量滿足,且與的夾角為,則()A. B. C. D.10.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.11.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.12.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.14.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.已知正項(xiàng)等比數(shù)列中,,則__________.16.的展開式中的系數(shù)為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點(diǎn)分別為,,點(diǎn),求的值.18.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.19.(12分)在三棱柱中,四邊形是菱形,,,,,點(diǎn)M、N分別是、的中點(diǎn),且.(1)求證:平面平面;(2)求四棱錐的體積.20.(12分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn).(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).21.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.22.(10分)已知函數(shù)(,)滿足下列3個(gè)條件中的2個(gè)條件:①函數(shù)的周期為;②是函數(shù)的對(duì)稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請(qǐng)指出這二個(gè)條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計(jì)算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時(shí),共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時(shí),共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時(shí),共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時(shí),共有種不同分配方案;共有20種不同分配方案.故選:B【點(diǎn)睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時(shí),要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.2、B【解析】
根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)?,所以,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.3、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.4、A【解析】
取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.5、B【解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.6、D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長(zhǎng)大于BB1,所以△DMN不可能為直角三角形,故錯(cuò)誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對(duì)線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.7、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.8、D【解析】
結(jié)合指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點(diǎn)睛】本題考查了幾個(gè)數(shù)的大小比較,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.9、A【解析】
根據(jù)向量的運(yùn)算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點(diǎn)睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.10、D【解析】
先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11、C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題12、A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)已知條件計(jì)算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計(jì)算能力,屬于中等題.14、【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.15、【解析】
利用等比數(shù)列的通項(xiàng)公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式以及等比中項(xiàng),需熟記公式,屬于基礎(chǔ)題.16、28【解析】
將已知式轉(zhuǎn)化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項(xiàng)式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點(diǎn)睛】本題考查二項(xiàng)式展開式中的某特定項(xiàng)的系數(shù),關(guān)鍵在于將原表達(dá)式化簡(jiǎn)將三項(xiàng)的冪的形式轉(zhuǎn)化為可求的二項(xiàng)式的形式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.18、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點(diǎn)列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對(duì)于任意實(shí)數(shù)都成立,所以.此時(shí),則.由,解得.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線,有且只有兩個(gè)公共點(diǎn)”.對(duì)函數(shù)求導(dǎo),得.由,解得,.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,所以?dāng)或時(shí),直線與曲線,有且只有兩個(gè)公共點(diǎn).即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.19、(1)證明見解析;(2).【解析】
(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點(diǎn)A到平面的距離,然后根據(jù)棱錐的體積公式即可求出四棱錐的體積.【詳解】(1)連接,由是平行四邊形及N是的中點(diǎn),得N也是的中點(diǎn),因?yàn)辄c(diǎn)M是的中點(diǎn),所以,因?yàn)?,所以,又,,所以平面,又平面,所以平面平面;?)過A作交于點(diǎn)O,因?yàn)槠矫嫫矫?,平面平面,所以平面,由是菱形及,得為三角形,則,由平面,得,從而側(cè)面為矩形,所以.【點(diǎn)睛】本題主要考查了面面垂直的證明,求四棱錐的體積,屬于一般題.20、(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點(diǎn),且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標(biāo)關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標(biāo)滿足的要求,再利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年防洪工程承包商建設(shè)借款合同3篇
- 事業(yè)單位人力資源聘用合同(2024版)版B版
- 2024離婚協(xié)議房產(chǎn)
- 2025年度高級(jí)軟件開發(fā)與技術(shù)服務(wù)合同2篇
- 二零二五版辣椒種子生產(chǎn)與辣椒苗代銷合作協(xié)議2篇
- 2024版工程協(xié)議監(jiān)管及進(jìn)度記錄臺(tái)賬一
- 二零二五版航空航天設(shè)備研發(fā)與采購(gòu)合同范本3篇
- 2024年版磚結(jié)構(gòu)建筑勞務(wù)合作模板協(xié)議版B版
- 二零二五年度燒烤餐飲業(yè)商鋪?zhàn)赓U合同書3篇
- 二零二五版寵物傷害賠償及責(zé)任承擔(dān)協(xié)議3篇
- 生物醫(yī)藥大數(shù)據(jù)分析平臺(tái)建設(shè)
- EPC總承包項(xiàng)目中的質(zhì)量管理體系
- 滬教版小學(xué)語文古詩(1-4)年級(jí)教材
- 外科醫(yī)生年終述職總結(jié)報(bào)告
- CT設(shè)備維保服務(wù)售后服務(wù)方案
- 重癥血液凈化血管通路的建立與應(yīng)用中國(guó)專家共識(shí)(2023版)
- 兒科課件:急性細(xì)菌性腦膜炎
- 柜類家具結(jié)構(gòu)設(shè)計(jì)課件
- 陶瓷瓷磚企業(yè)(陶瓷廠)全套安全生產(chǎn)操作規(guī)程
- 煤炭運(yùn)輸安全保障措施提升運(yùn)輸安全保障措施
- JTGT-3833-2018-公路工程機(jī)械臺(tái)班費(fèi)用定額
評(píng)論
0/150
提交評(píng)論