內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁
內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

內(nèi)蒙古自治區(qū)烏蘭察布集寧區(qū)集寧第一中學(xué)2023-2024學(xué)年高三二診模擬考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.2.已知集合,集合,則()A. B. C. D.3.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.14.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且5.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個6.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.7.已知,則()A.5 B. C.13 D.8.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標(biāo)原點),則雙曲線C的離心率為A. B. C. D.9.已知復(fù)數(shù)滿足,則的值為()A. B. C. D.210.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.11.已知集合A,則集合()A. B. C. D.12.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.14.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.15.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.16.設(shè),滿足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點,求證:平面;(2)若,求四棱錐的體積.18.(12分)已知a>0,證明:1.19.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點,,若,求的最小值.20.(12分)某健身館為響應(yīng)十九屆四中全會提出的“聚焦增強人民體質(zhì),健全促進全民健身制度性舉措”,提高廣大市民對全民健身運動的參與程度,推出了健身促銷活動,收費標(biāo)準(zhǔn)如下:健身時間不超過1小時免費,超過1小時的部分每小時收費標(biāo)準(zhǔn)為20元(不足l小時的部分按1小時計算).現(xiàn)有甲、乙兩人各自獨立地來該健身館健身,設(shè)甲、乙健身時間不超過1小時的概率分別為,,健身時間1小時以上且不超過2小時的概率分別為,,且兩人健身時間都不會超過3小時.(1)設(shè)甲、乙兩人所付的健身費用之和為隨機變量(單位:元),求的分布列與數(shù)學(xué)期望;(2)此促銷活動推出后,健身館預(yù)計每天約有300人來參與健身活動,以這兩人健身費用之和的數(shù)學(xué)期望為依據(jù),預(yù)測此次促銷活動后健身館每天的營業(yè)額.21.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時,求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.22.(10分)為響應(yīng)“堅定文化自信,建設(shè)文化強國”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機抽取了120名學(xué)生做調(diào)查,統(tǒng)計結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認為喜歡閱讀中國古典文學(xué)與性別有關(guān)系?男生女生總計喜歡閱讀中國古典文學(xué)不喜歡閱讀中國古典文學(xué)總計(2)為做好文化建設(shè)引領(lǐng),實驗組把該校作為試點,和該校的學(xué)生進行中國古典文學(xué)閱讀交流.實驗人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.2、D【解析】

可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.3、A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運用基本不等式求最值,考查計算能力.4、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運算求解的能力,屬于中檔題.5、B【解析】

根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當(dāng)集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.6、D【解析】

利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.7、C【解析】

先化簡復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復(fù)數(shù)的運算,是基礎(chǔ)題.8、B【解析】

直線的傾斜角為,易得.設(shè)雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.9、C【解析】

由復(fù)數(shù)的除法運算整理已知求得復(fù)數(shù)z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復(fù)數(shù)的除法運算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.10、C【解析】

根據(jù)復(fù)數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的運算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.11、A【解析】

化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.12、B【解析】

結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計算最值,即可得出答案.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學(xué)生的計算能力.14、18【解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當(dāng)時,,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調(diào)遞減,則,因為,則,整理得,又因為,則.所以即,所以當(dāng)且僅當(dāng)時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.16、【解析】

先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線過直線與直線的交點時,目標(biāo)函數(shù)取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)設(shè)EC與DF交于點N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計算出體積.【詳解】(1)證明:設(shè)與交于點,連接,在矩形中,點為中點,∵為的中點,∴,又∵平面,平面,∴平面.(2)取中點為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補形法、等體積法.①割補法:求一些不規(guī)則幾何體的體積時,常用割補法轉(zhuǎn)化成已知體積公式的幾何體進行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時,這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計算得到高的數(shù)值.18、證明見解析【解析】

利用分析法,證明a即可.【詳解】證明:∵a>0,∴a1,∴a1≥0,∴要證明1,只要證明a1(a)1﹣4(a)+4,只要證明:a,∵a1,∴原不等式成立.【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題.19、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】

(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導(dǎo),得到,結(jié)合,當(dāng)?shù)玫剑涸鰠^(qū)間為,當(dāng),得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導(dǎo)得到,令,得到,,,,,,,,因為,所以設(shè),令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.20、(1)見解析,40元(2)6000元【解析】

(1)甲、乙兩人所付的健身費用都是0元、20元、40元三種情況,因此甲、乙兩人所付的健身費用之和共有9種情況,分情況計算即可(2)根據(jù)(1)結(jié)果求均值.【詳解】解:(1)由題設(shè)知可能取值為0,20,40,60,80,則;;;;.故的分布列為:020406080所以數(shù)學(xué)期望(元)(2)此次促銷活動后健身館每天的營業(yè)額預(yù)計為:(元)【點睛】考查離散型隨機變量的分布列及其期望的求法,中檔題.21、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】

(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點列表分析導(dǎo)函數(shù)符號變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以.此時,則.由,解得.當(dāng)x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論