湖南省華容縣重點名校2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
湖南省華容縣重點名校2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
湖南省華容縣重點名校2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
湖南省華容縣重點名校2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
湖南省華容縣重點名校2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省華容縣重點名校2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x12.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣13.若關(guān)于x的一元二次方程x2﹣2x+m=0沒有實數(shù)根,則實數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣14.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.5.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.6.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.7.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+48.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°9.圓錐的底面半徑為2,母線長為4,則它的側(cè)面積為()A.8π B.16π

C.4π D.4π10.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根11.如圖,矩形ABCD的邊AB=1,BE平分∠ABC,交AD于點E,若點E是AD的中點,以點B為圓心,BE長為半徑畫弧,交BC于點F,則圖中陰影部分的面積是()A.2- B. C.2- D.12.如圖是一個空心圓柱體,其俯視圖是()A.B.C.D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,AB=AC,以AC為斜邊作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分別是BC、AC的中點,則∠EDF等于__________°.14.如圖,DA⊥CE于點A,CD∥AB,∠1=30°,則∠D=_____.15.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環(huán)數(shù)相等,其中甲所得環(huán)數(shù)的方差為15,乙所得環(huán)數(shù)如下:0,1,5,9,10,那么成績較穩(wěn)定的是_____(填“甲”或“乙”).16.已知:ab=23,則17.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.18.請你算一算:如果每人每天節(jié)約1粒大米,全國13億人口一天就能節(jié)約_____千克大米?。ńY(jié)果用科學(xué)記數(shù)法表示,已知1克大米約52粒)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.20.(6分)(1)計算:(a-b)2-a(a-2b);(2)解方程:=.21.(6分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.求證:DE是⊙O的切線;當(dāng)⊙O半徑為3,CE=2時,求BD長.22.(8分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大小.23.(8分)先化簡:,然后從的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.24.(10分)如圖,在邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標系,格點△ABC(頂點是網(wǎng)格線的交點)的坐標分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△DEF,畫出△DEF;(2)以O(shè)為位似中心,將△ABC放大為原來的2倍,在網(wǎng)格內(nèi)畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應(yīng)點P1的坐標為.25.(10分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.26.(12分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.27.(12分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及在每一象限內(nèi)函數(shù)的增減性,再根據(jù)y1<0<y2<y3判斷出三點所在的象限,故可得出結(jié)論.【詳解】解:∵反比例函數(shù)y=﹣中k=﹣1<0,∴此函數(shù)的圖象在二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據(jù)題意判斷出函數(shù)圖象所在的象限是解答此題的關(guān)鍵.2、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數(shù)式的求值;整體思想.3、C【解析】試題解析:關(guān)于的一元二次方程沒有實數(shù)根,,解得:故選C.4、A【解析】

由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,

矩形的面積=,

故,

故選:A.【點睛】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關(guān)鍵.5、B【解析】

由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【點睛】本題主要考查了幾何題的三視圖,解題關(guān)鍵是能正確畫出幾何體的三視圖.6、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數(shù).故選A.7、A【解析】

先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當(dāng)向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點式進行;8、A【解析】

根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.9、A【解析】

解:底面半徑為2,底面周長=4π,側(cè)面積=×4π×4=8π,故選A.10、C【解析】

解:由題意可知4的算術(shù)平方根是2,4的立方根是<2,8的算術(shù)平方根是,2<<3,8的立方根是2,

故根據(jù)數(shù)軸可知,

故選C11、B【解析】

利用矩形的性質(zhì)以及結(jié)合角平分線的性質(zhì)分別求出AE,BE的長以及∠EBF的度數(shù),進而利用圖中陰影部分的面積=S-S-S,求出答案.【詳解】∵矩形ABCD的邊AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵點E是AD的中點,∴AE=ED=1,∴圖中陰影部分的面積=S?S?S=1×2?×1×1?故選B.【點睛】此題考查矩形的性質(zhì),扇形面積的計算,解題關(guān)鍵在于掌握運算公式12、D【解析】

根據(jù)從上邊看得到的圖形是俯視圖,可得答案.【詳解】該空心圓柱體的俯視圖是圓環(huán),如圖所示:故選D.【點睛】本題考查了三視圖,明確俯視圖是從物體上方看得到的圖形是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】E、F分別是BC、AC的中點.,∠CAB=26°又∠CAD=26°!14、60°【解析】

先根據(jù)垂直的定義,得出∠BAD=60°,再根據(jù)平行線的性質(zhì),即可得出∠D的度數(shù).【詳解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案為60°.【點睛】本題主要考查了平行線的性質(zhì)以及垂線的定義,解題時注意:兩直線平行,內(nèi)錯角相等.15、甲.【解析】乙所得環(huán)數(shù)的平均數(shù)為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩(wěn)定.故答案為甲.點睛:要比較成績穩(wěn)定即比方差大小,方差越大,越不穩(wěn)定;方差越小,越穩(wěn)定.16、–12【解析】

根據(jù)已知等式設(shè)a=2k,b=3k,代入式子可求出答案.【詳解】解:由ab故:a-2bb+2b故答案:-1【點睛】此題主要考查比例的性質(zhì),a、b都用k表示是解題的關(guān)鍵.17、50【解析】

由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得

=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,

∴=,

∵∠BCD=25°=,

∴∠AOD=2∠BCD=50°,

故答案為50【點睛】本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.18、2.5×1【解析】

先根據(jù)有理數(shù)的除法求出節(jié)約大米的千克數(shù),再用科學(xué)計數(shù)法表示,對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【點睛】本題考查了有理數(shù)的除法和正整數(shù)指數(shù)科學(xué)計數(shù)法,根據(jù)科學(xué)計算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】

(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進而可利用SAS證明△CQB≌△CPA,進而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因為△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;

(3)連結(jié)CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.【點睛】本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計算、30°角的直角三角形的性質(zhì)等知識,涉及的知識點多、綜合性強,靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.20、(1)b2(2)1【解析】分析:(1)、根據(jù)完全平方公式以及多項式的乘法計算法則將括號去掉,然后進行合并同類項即可得出答案;(2)、收下進行去分母,將其轉(zhuǎn)化為整式方程,從而得出方程的解,最后需要進行驗根.詳解:(1)解:原式=a2-2ab+b2-a2+2ab=b2;(2)解:,解得:x=1,經(jīng)檢驗x=1為原方程的根,所以原方程的解為x=1.點睛:本題主要考查的是多項式的乘法以及解分式方程,屬于基礎(chǔ)題型.理解計算法則是解題的關(guān)鍵.分式方程最后必須要進行驗根.21、(1)證明見解析;(2)BD=2.【解析】

(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;

(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD?CD=AB?CE,由BD=CD,即可求得BD2=AB?CE,然后代入數(shù)據(jù)即可得到結(jié)果.【詳解】(1)證明:連接OD,如圖,∵AB為⊙0的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD為△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切線;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD?CD=AB?CE,∵BD=CD,∴BD2=AB?CE,∵⊙O半徑為3,CE=2,∴BD==2.【點睛】本題考查了切線的判定定理:過半徑的外端點且與半徑垂直的直線為圓的切線.也考查了等腰三角形的性質(zhì)、三角形相似的判定和性質(zhì).22、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對應(yīng)角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點:相似三角形的判定與性質(zhì).23、,當(dāng)x=1時,原式=﹣1.【解析】

先化簡分式,然后將x的值代入計算即可.【詳解】解:原式==.且,∴x的整數(shù)有,∴取,當(dāng)時,原式.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算法則是解題的關(guān)鍵.24、(1)見解析;(2)見解析,(﹣2x,﹣2y).【解析】

(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點A、B、C的對應(yīng)點D、E、F,即可得到△DEF;(2)先根據(jù)位似中心的位置以及放大的倍數(shù),畫出原三角形各頂點的對應(yīng)頂點,再順次連接各頂點,得到△A1B1C1,根據(jù)△A1B1C1結(jié)合位似的性質(zhì)即可得P1的坐標.【詳解】(1)如圖所示,△DEF即為所求;(2)如圖所示,△A1B1C1即為所求,這次變換后的對應(yīng)點P1的坐標為(﹣2x,﹣2y),故答案為(﹣2x,﹣2y).【點睛】本題主要考查了位似變換與旋轉(zhuǎn)變換,解決問題的關(guān)鍵是先作出圖形各頂點的對應(yīng)頂點,再連接各頂點得到新的圖形.在畫位似圖形時需要注意,位似圖形的位似中心可能在兩個圖形之間,也可能在兩個圖形的同側(cè).25、(1)(1,4)(2)(0,)或(0,-1)【解析】試題分析:(1)先求得點C的坐標,再由OA=OC得到點A的坐標,再根據(jù)拋物線的對稱性得到點B的坐標,利用待定系數(shù)法求得解析式后再進行配方即可得到頂點坐標;(2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可;(3)分情況進行討論即可得.試題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論