版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市望城區(qū)2024屆中考數學全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.x=1是關于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.12.如圖,I是?ABC的內心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉一定能與線段DC重合B.線段DB繞點D順時針旋轉一定能與線段DI熏合C.∠CAD繞點A順時針旋轉一定能與∠DAB重合D.線段ID繞點I順時針旋轉一定能與線段IB重合3.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O外 C.點P在⊙O上 D.無法判斷4.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.5.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點,連接DF,F(xiàn)E,則四邊形DBEF的周長是(
)A.5 B.7 C.9 D.116.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a67.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a10÷a5=a5 D.(xy2)3=xy68.二次函數y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣29.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.10.某校九年級(1)班全體學生實驗考試的成績統(tǒng)計如下表:成績(分)24252627282930人數(人)2566876根據上表中的信息判斷,下列結論中錯誤的是()A.該班一共有40名同學B.該班考試成績的眾數是28分C.該班考試成績的中位數是28分D.該班考試成績的平均數是28分二、填空題(本大題共6個小題,每小題3分,共18分)11.如果將拋物線平移,使平移后的拋物線頂點坐標為,那么所得新拋物線的表達式是__________.12.如圖,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延長線于點F,若AD=1,BD=2,BC=4,則EF=________.13.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉180°得到△BDE,△ABC的面積=_____cm1.14.如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l1分別通過A、B、C三點,且l1∥l2∥l1.若l1與l2的距離為5,l2與l1的距離為7,則Rt△ABC的面積為___________15.關于的一元二次方程有兩個相等的實數根,則________.16.兩個等腰直角三角板如圖放置,點F為BC的中點,AG=1,BG=3,則CH的長為__________.三、解答題(共8題,共72分)17.(8分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.18.(8分)填空并解答:某單位開設了一個窗口辦理業(yè)務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結束時刻2468101214161820…根據上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數),則當a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結束的時刻為.19.(8分)為獎勵優(yōu)秀學生,某校準備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元。求文具袋和圓規(guī)的單價。學校準備購買文具袋20個,圓規(guī)若干,文具店給出兩種優(yōu)惠方案:方案一:購買一個文具袋還送1個圓規(guī)。方案二:購買圓規(guī)10個以上時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.①設購買面規(guī)m個,則選擇方案一的總費用為______,選擇方案二的總費用為______.②若學校購買圓規(guī)100個,則選擇哪種方案更合算?請說明理由.20.(8分)如圖,△ABC內接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數量關系,并說明理由.21.(8分)如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標,若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.22.(10分)如圖,二次函數y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求該二次函數的表達式;(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數表達式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由;②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當運動時間t為何值時,△DMN的面積最大,并求出這個最大值.23.(12分)已知函數的圖象與函數的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結合函數圖象,直接寫出實數的取值范圍.24.如圖,直線y=﹣x+3分別與x軸、y交于點B、C;拋物線y=x2+bx+c經過點B、C,與x軸的另一個交點為點A(點A在點B的左側),對稱軸為l1,頂點為D.(1)求拋物線y=x2+bx+c的解析式.(2)點M(1,m)為y軸上一動點,過點M作直線l2平行于x軸,與拋物線交于點P(x1,y1),Q(x2,y2),與直線BC交于點N(x3,y3),且x2>x1>1.①結合函數的圖象,求x3的取值范圍;②若三個點P、Q、N中恰好有一點是其他兩點所連線段的中點,求m的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.2、D【解析】解:∵I是△ABC的內心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內切圓和內心的,以及等腰三角形的判定與性質,同弧所對的圓周角相等.3、B【解析】
比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關系,記住:點與圓的位置關系有3種設的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內.4、B【解析】
根據折疊的性質可知AE=DE=3,然后根據勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質,勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關鍵.5、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.6、D【解析】
根據合并同類項法則判斷A、C;根據積的乘方法則判斷B;根據冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質和運算法則是解題的關鍵.7、C【解析】
根據乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方進行計算即可得到答案.【詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【點睛】本題考查乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方解題的關鍵是掌握乘方的運算法則、完全平方公式、同底數冪的除法和積的乘方的運算.8、D【解析】
根據二次函數頂點式的性質解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數頂點式y(tǒng)=a(x-h)2+k的性質,對稱軸為x=h,頂點坐標為(h,k)熟練掌握頂點式的性質是解題關鍵.9、C【解析】
根據軸對稱圖形和中心對稱圖形的概念,對各個選項進行判斷,即可得到答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關鍵是熟練掌握概念進行分析判斷.10、D【解析】
直接利用眾數、中位數、平均數的求法分別分析得出答案.【詳解】解:A、該班一共有2+5+6+6+8+7+6=40名同學,故此選項正確,不合題意;B、該班考試成績的眾數是28分,此選項正確,不合題意;C、該班考試成績的中位數是:第20和21個數據的平均數,為28分,此選項正確,不合題意;D、該班考試成績的平均數是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故選項D錯誤,符合題意.故選D.【點睛】此題主要考查了眾數、中位數、平均數的求法,正確把握相關定義是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
平移不改變拋物線的開口方向與開口大小,即解析式的二次項系數不變,根據拋物線的頂點式可求拋物線解析式.【詳解】∵原拋物線解析式為y=1x1,頂點坐標是(0,0),平移后拋物線頂點坐標為(1,1),∴平移后的拋物線的表達式為:y=1(x﹣1)1+1.故答案為:y=1(x﹣1)1+1.【點睛】本題考查了拋物線的平移與解析式變化的關系.關鍵是明確拋物線的平移實質上是頂點的平移,能用頂點式表示平移后的拋物線解析式.12、【解析】
由DE∥BC可得出△ADE∽△ABC,根據相似三角形的性質和平行線的性質解答即可.【詳解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案為.【點睛】此題考查相似三角形的判定和性質,關鍵是由DE∥BC可得出△ADE∽△ABC.13、18【解析】
三角形的重心是三條中線的交點,根據中線的性質,S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質,中線的性質,旋轉的性質,勾股定理逆定理等,綜合性比較強,對學生要求較高.14、17【解析】過點B作EF⊥l2,交l1于E,交l1于F,如圖,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB?BC=AB2=17.故答案是17.點睛:本題考查了全等三角形的判定和性質、勾股定理、平行線間的距離,三角形的面積公式,解題的關鍵是做輔助線,構造全等三角形,通過證明三角形全等對應邊相等,再利用三角形的面積公式即可得解.15、-1.【解析】
根據根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數根;當==0時,方程有兩個相等的實數根;當=<0時,方程無實數根.16、【解析】
依據∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進而得到△BFG∽△CHF,依據相似三角形的性質,即可得到=,即=,即可得到CH=.【詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.【點睛】本題主要考查了相似三角形的判定與性質,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.三、解答題(共8題,共72分)17、(1)見解析;(2)12【解析】
(1)連接OC、BC,根據題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結論.(2)先根據題意證明出△PBC∽△PCA,再根據相似三角形的性質得出邊的比值,由此可得出結論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切線.(2)∵AB是直徑∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【點睛】本題考查了切線與相似三角形的判定與性質,解題的關鍵是熟練的掌握切線的判定與相似三角形的判定與性質.18、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,則第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,∴第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點睛】本題考查了列代數式,用代數式表示數的規(guī)律,解題關鍵是要讀懂題目的意思,根據題目給出的條件,尋找規(guī)律,列出代數式.19、(1)文具袋的單價為15元,圓規(guī)單價為3元;(2)①方案一總費用為元,方案二總費用為元;②方案一更合算.【解析】
(1)設文具袋的單價為x元/個,圓規(guī)的單價為y元/個,根據“購買1個文具袋和2個圓規(guī)需21元;購買2個文具袋和3個圓規(guī)需39元”,即可得出關于x,y的二元一次方程組,解之即可得出結論;
(2)根據總價=單價×數量結合兩種優(yōu)惠方案,設購買面規(guī)m個,分別求出選擇方案一和選擇方案二所需費用,然后代入m=100計算比較后即可得出結論.【詳解】(1)設文具袋的單價為x元,圓規(guī)單價為y元。由題意得解得答:文具袋的單價為15元,圓規(guī)單價為3元。(2)①設圓規(guī)m個,則方案一總費用為:元方案二總費用元故答案為:元;②買圓規(guī)100個時,方案一總費用:元,方案二總費用:元,∴方案一更合算?!军c睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.20、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的長,從而得到半徑AO.再由△AOE∽△ACB,得到OE的長;(2)連結OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點:切線的性質;探究型;和差倍分.21、(1)y=﹣x2﹣x+3;(2)①點D坐標為(﹣,0);②點M(,0).【解析】
(1)應用待定系數法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點D坐標,證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(1)將點(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點D,使得△APQ和△CDO全等,當D在線段OA上,∠QAP=∠DCO,AP=OC=3時,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點D坐標為(-,0).由對稱性,當點D坐標為(,0)時,由點B坐標為(4,0),此時點D(,0)在線段OB上滿足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點D坐標為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點N為AC中點.∴DN時△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點M(,0)【點睛】本題是二次函數綜合題,考查了二次函數待定系數法、三角形全等的判定、銳角三角形函數的相關知識.解答時,注意數形結合.22、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當t=時,S△MDN的最大值為.【解析】
(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結果;
(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設直線AD的解析式為y=-x+b,即可得到結論;
(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當或時,△PBC∽△ABD,解方程組得D(4,?5),求得設P的坐標為(x,0),代入比例式解得或x=?4.5,即可得到或P(?4.5,0);
②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到結果.【詳解】(1)由題意知:解得∴二次函數的表達式為(2)在中,令y=0,則解得:∴B(3,0),由已知條件得直線BC的解析式為y=?x+3,∵AD∥BC,∴設直線AD的解析式為y=?x+b,∴0=1+b,∴b=?1,∴直線AD的解析式為y=?x?1;(3)①∵BC∥AD,∴∠DAB=∠CBA,∴只要當:或時,△PBC∽△ABD,解得D(4,?5),∴設P的坐標為(x,0),即或解得或x=?4.5,∴或P(?4.5,0),②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∴sin∠BAF∴∴∵又∵∴∴當時,的最大值為【點睛】屬于二次函數的綜合題,考查待定系數法求二次函數解析式,銳角三角形函數,相似三角形的判定與性質,二次函數的最值等,綜合性比較強,難度較大.23、(1),,或;(2).【解析】【分析】(1)將P(m,n)代入y=kx,再結合m=2n即可求得k的值,聯(lián)立y=與y=kx組成方程組,解方程組即可求得點P的坐標;(2)畫出兩個函數的圖象,觀察函數的圖象即可得.【詳解】(1)∵函數的圖象交于點,∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直線解析式為:y=x,解方程組,得,,∴交點P的坐標為:(,)或(-,-);(2)由題意畫出函數的圖象與函數的圖象如圖所示,∵函數的圖象與函數的交點P的坐標為(m,n),∴當k=1時,P的坐標為(1,1)或(-1,-1),此時|m|=|n|,當k>1時,結合圖象可知此時|m|<|n|,∴當時,≥1.【點睛】本題考查了反比例函數與正比例函數的交點,待定系數法等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人二手車轉讓及二手車交易風險防范合同4篇
- 二零二五版多房產離婚協(xié)議書-2025年度家庭財產分割實施標準3篇
- 二零二五年度城市綜合體項目投資典當協(xié)議4篇
- 光伏區(qū)圍欄施工方案
- 建筑工程石材采購合同(2篇)
- 家具家居出海:機遇、挑戰(zhàn)與應對策略 頭豹詞條報告系列
- 二零二五年度民宿布草租賃與民宿客棧服務質量保障合同4篇
- 2024年咨詢工程師(經濟政策)考試題庫帶答案(考試直接用)
- 2025年度個人商鋪買賣合同規(guī)范范本3篇
- 2025年度宅基地使用權流轉登記代理服務合同4篇
- 道路瀝青工程施工方案
- 《田口方法的導入》課件
- 內陸?zhàn)B殖與水產品市場營銷策略考核試卷
- 票據業(yè)務居間合同模板
- 承包鋼板水泥庫合同范本(2篇)
- DLT 572-2021 電力變壓器運行規(guī)程
- 公司沒繳社保勞動仲裁申請書
- 損傷力學與斷裂分析
- 2024年縣鄉(xiāng)教師選調進城考試《教育學》題庫及完整答案(考點梳理)
- 車借給別人免責協(xié)議書
- 應急預案評分標準表
評論
0/150
提交評論