版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
考研數(shù)學二(線性代數(shù))模擬試卷51(總分70,考試時間90分鐘)選擇題下列每題給出的四個選項中,只有一個選項符合題目要求。1.設(shè)A是秩為n一1的n階矩陣,α1,α2是方程組Ax=0的兩個不同的解向量,則Ax=0的通解必定是()A.α1+α2B.kα1C.k(α1+α2)D.k(α1一α2)2.已知向量組(I)α1,α2,α3,α4線性無關(guān),則與(I)等價的向量組是()A.α1+α2,α2+α3,α3+α4,α4+α1B.α1-α2,α2-α3,α3一α4,α4-α1C.α1+α2,α2-α3,α3+α4,α4-α1D.α1+α2,α2-α3,α3一α4,α4一α13.設(shè)向量組α1,α2,α3線性無關(guān),則下列向量組中,線性無關(guān)的是()A.α1+α2,α2+α3,α3一α1B.α1+α2,α2+α3,α1+2α2+α3C.α1+2α2,2α2+3α3,3α3+α1D.α1+α2+α3,2α1—3α2+22α3,3α1+5α2—5α34.已知向量組α1,α2,α3,α4線性無關(guān),則向量組2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()A.1 B.2C.3 D.45.設(shè)xOy平面上n個不同的點為Mi(xi,yi),i=1,2,…,n(n≥3),記則M1,M2,…,Mn共線的充要條件是r(A)=()A.1 B.2C.3 D.46.設(shè)A是m×n矩陣,C是n階可逆矩陣,矩陣A的秩為r,矩陣B=AC的秩為r1,則()A.r>r1B.r<r1C.r=r1D.r和r1的關(guān)系依C而定7.設(shè)A為m×n矩陣,齊次線性方程組AX=0僅有零解的充分條件是()A.A的列向量線性無關(guān) B.A的列向量線性相關(guān)C.A的行向量線性無關(guān) D.A的行向量線性相關(guān)8.已知β1,β2是AX=b的兩個不同的解,α1,α2是相應(yīng)的齊次方程組AX=0的基礎(chǔ)解系,k1,k2是任意常數(shù),則AX=b的通解是()A. B.C. D.9.設(shè)A是m×n矩陣,非齊次線性方程組為AX=b,①對應(yīng)的齊次線性方程組為AX=0,②則()A.①有無窮多解②僅有零解B.①有無窮多解②有無窮多解C.②僅有零解①有唯一解D.②有非零解①有無窮多解10.設(shè)矩陣Am×n的秩r(A)=r([A|b])=m<n,則下列說法錯誤的是()A.AX=0必有無窮多解B.AX=b必無解C.AX=b必有無窮多解D.存在可逆矩陣P,使AP=[EmO]11.已知α1=[一1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是4階方陣A的三個不同特征值對應(yīng)的特征向量,則a的取值范圍為()A.a≠5 B.a≠一4C.a≠一3 D.a≠一3且a≠一4E.D2.填空題1.設(shè)則A-1=__________.2.已知A2一2A+E=O,則(A+B)-1=_________.3.設(shè)則(A-1)*=_________.4.設(shè)則B-1=_______.5.設(shè)A是4×3矩陣,且r(A)=2,而則r(AB)=____________.6.設(shè)A,B均為3階矩陣,E是3階單位矩陣,已知AB=2A+3B,則(B-2E)-1=__________.7.設(shè)α1=[1,0,一1,2]T,α2=[2,-1,一2,6]T,α3=[3,1,t,4]T,β=[4,一1,一5,10]T,已知β不能由α1,α2,α3線性表出,則t=_________.解答題解答應(yīng)寫出文字說明、證明過程或演算步驟。已知矩陣與相似.1.求x與y;2.求一個滿足P-1AP=B的可逆矩陣P.3.設(shè)矩陣問k為何值時,存在可逆矩陣P,使得P-1AP=A,求出P及相應(yīng)的對角矩陣.4.設(shè)矩陣有三個線性無關(guān)特征向量,λ=2是A的二重特征值,試求可逆矩陣P,使得P-1AP=A,A是對角矩陣.已知ξ=[1,1,一1]T是矩陣的一個特征向量.5.確定參數(shù)a,b及ξ對應(yīng)的特征值λ;6.A是否相似于對角矩陣,說明理由.7.設(shè)A是n階方陣,2,4,…,2n是A的n個特征值,E是n階單位矩陣.計算行列式|A一3E的值.8.計算行列式9.計算10.設(shè)3階矩陣A滿足|A—B|=|A+B|=|A+2E|=0,試計算|A*+3E|.11.設(shè)A是n階矩陣,滿足AAT=E(E是n階單位矩陣,AT是A的轉(zhuǎn)置矩陣),|A|<0,求|A+E|.12.設(shè)a1,a2,…,an是互不相同的實數(shù),且求線性方程組AX=b的解.13.設(shè)向量組證明:向量組α1,α2,…,αs線性相關(guān)(線性無關(guān))的充要條件是齊次線性方程組有非零解(唯一零解).14.已知α1,α2,…,αs線性無關(guān),β可由α1,α2,…,αs線性表出,且表出式的系數(shù)全不為零,證明:α1,α2,…,αs,β中任意s個向量線性無關(guān).15.已知A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購合同風險管理實踐與經(jīng)驗3篇
- 采購合同管理中的合同管理課程3篇
- 采購戰(zhàn)略合同的成本控制3篇
- 采購合同管理標準3篇
- 采購合同評審流程的優(yōu)化建議3篇
- 采購合同預付款的退還規(guī)定3篇
- 采購合同協(xié)議書范本填寫范例示例3篇
- 采購框架合同案例3篇
- 采購合同的員工培訓計劃3篇
- 采購合同與補充協(xié)議的范本3篇
- 30題戰(zhàn)略規(guī)劃崗位常見面試問題含HR問題考察點及參考回答
- 小學數(shù)學指向核心素養(yǎng)的單元整體教學
- 噴淋、消火栓試壓記錄表
- 學校精準扶貧工作計劃
- 工業(yè)產(chǎn)品質(zhì)量安全風險管控清單
- 【幼兒生活環(huán)節(jié)中數(shù)學思維能力培養(yǎng)研究5500字(論文)】
- 大額保單操作實務(wù)
- 限制被執(zhí)行人駕駛令申請書
- 皮帶輸送機巡檢規(guī)程
- 遼寧省大連市沙河口區(qū)2022-2023學年七年級上學期期末語文試題(含答案)
- 華為DSTE戰(zhàn)略管理體系完整版
評論
0/150
提交評論