2024屆新疆昌吉市教育共同體四校高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
2024屆新疆昌吉市教育共同體四校高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
2024屆新疆昌吉市教育共同體四校高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
2024屆新疆昌吉市教育共同體四校高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
2024屆新疆昌吉市教育共同體四校高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆新疆昌吉市教育共同體四校高考沖刺模擬數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.2.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知函數(shù),當(dāng)時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.4.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.5.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.6.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到7.點為的三條中線的交點,且,,則的值為()A. B. C. D.8.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.9.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.10.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.11.已知函數(shù)滿足:當(dāng)時,,且對任意,都有,則()A.0 B.1 C.-1 D.12.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.3二、填空題:本題共4小題,每小題5分,共20分。13.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數(shù)列,后三個和尚的身高依次成等比數(shù)列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.14.已知實數(shù)a,b,c滿足,則的最小值是______.15.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.16.已知非零向量的夾角為,且,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女1055合計(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63518.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個一組進(jìn)行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進(jìn)行檢驗,如此,每一組產(chǎn)品只需檢驗次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當(dāng)越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當(dāng)時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).19.(12分)已知函數(shù),.(1)當(dāng)x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;(2)當(dāng)x<0時,研究函數(shù)F(x)=h(x)﹣g(x)的零點個數(shù);(3)求證:(參考數(shù)據(jù):ln1.1≈0.0953).20.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設(shè),表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.21.(12分)已知A是拋物線E:y2=2px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x=1于M,N兩點.(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點為P,Q,點G為PQ的中點,O為坐標(biāo)原點,求直線OG斜率的取值范圍.22.(10分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.2、B【解析】

根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.3、C【解析】

求導(dǎo)分析函數(shù)在時的單調(diào)性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時,,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當(dāng)時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.4、B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.5、A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.6、D【解析】

由可判斷選項A;當(dāng)時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時,,所以B正確;當(dāng)時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.7、B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.8、C【解析】

可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因為,即,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.9、B【解析】

把已知點坐標(biāo)代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.10、A【解析】

是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標(biāo).11、C【解析】

由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.12、D【解析】

畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意設(shè)前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數(shù)列,則公比,故.14、【解析】

先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進(jìn)而求出最小值.【詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.15、【解析】

由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學(xué)生空間想象能力與計算能力,是一道中檔題.16、1【解析】

由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,

可得,

解得,

故答案為:1.【點睛】本題考查根據(jù)向量的數(shù)量積運算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)無關(guān);(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=18、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進(jìn)而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當(dāng)且取最小值時,該方案最合理,對進(jìn)行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調(diào)遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當(dāng)且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.【點睛】本題考查了離散型隨機(jī)變量的分布列、數(shù)學(xué)期望,考查了分析問題、解決問題的能力,屬于中檔題.19、(1);(2)見解析;(3)見解析【解析】

(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導(dǎo)數(shù),討論a>1和a≤1,判斷導(dǎo)數(shù)的符號,由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導(dǎo)數(shù)和二階導(dǎo)數(shù),判斷F'(x)的單調(diào)性,討論a≤﹣1,a>﹣1,F(xiàn)(x)的單調(diào)性和零點個數(shù);(3)由(1)知,當(dāng)a=1時,ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當(dāng)a=﹣1時,對x<0恒成立,令,結(jié)合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞時,H'(x)→+∞,則?x0∈(0,+∞),使H'(x0)=0進(jìn)而H(x)在[0,x0)遞減,在(x0,+∞)遞增,所以當(dāng)x∈(0,x0)時H(x)<H(0)=0,即當(dāng)x∈(0,x0)時,f(x)>h(x),不滿足題意,舍去;綜合①,②知a的取值范圍為(﹣∞,1].(Ⅱ)解:依題意得,則F'(x)=ex﹣x2+a,則F''(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)遞增,所以F'(x)<F'(0)=1+a,且x→﹣∞時,F(xiàn)'(x)→﹣∞;①若1+a≤0,即a≤﹣1,則F'(x)<F'(0)=1+a≤0,故F(x)在(﹣∞,0)遞減,所以F(x)>F(0)=0,F(xiàn)(x)在(﹣∞,0)無零點;②若1+a>0,即a>﹣1,則使,進(jìn)而F(x)在遞減,在遞增,,且x→﹣∞時,,F(xiàn)(x)在上有一個零點,在無零點,故F(x)在(﹣∞,0)有一個零點.綜合①②,當(dāng)a≤﹣1時無零點;當(dāng)a>﹣1時有一個零點.(Ⅲ)證明:由(Ⅰ)知,當(dāng)a=1時,ex>1+ln(x+1)對x>0恒成立,令,則即;由(Ⅱ)知,當(dāng)a=﹣1時,對x<0恒成立,令,則,所以;故有.【點睛】本題考查導(dǎo)數(shù)的運用:求單調(diào)區(qū)間,考查函數(shù)零點存在定理的運用,考查分類討論思想方法,以及運算能力和推理能力,屬于難題.對于函數(shù)的零點問題,它和方程的根的問題,和兩個函數(shù)的交點問題是同一個問題,可以互相轉(zhuǎn)化;在轉(zhuǎn)化為兩個函數(shù)交點時,如果是一個常函數(shù)一個含自變量的函數(shù),注意讓含有自變量的函數(shù)式子盡量簡單一些.20、(1)見解析(2),最大值.【解析】

(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結(jié)合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,當(dāng)且僅當(dāng),即時取等號,∴當(dāng)時,體積有最大值.【點睛】本題考查了線面垂直的證明和三棱錐的體積,考查了學(xué)生邏輯推理,空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.21、(1).(2)【解析】

(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論