版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省南京市秦淮區(qū)(一中學)中考試題猜想數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.方程x-2x-3A.x=﹣1 B.x=1 C.x=2 D.x=32.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤3.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.64.在直角坐標系中,已知點P(3,4),現(xiàn)將點P作如下變換:①將點P先向左平移4個單位,再向下平移3個單位得到點P1;②作點P關于y軸的對稱點P2;③將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,則P1,P2,P3的坐標分別是()A.P1(0,0),P2(3,﹣4),P3(﹣4,3)B.P1(﹣1,1),P2(﹣3,4),P3(4,3)C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)5.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.86.下列美麗的壯錦圖案是中心對稱圖形的是()A. B. C. D.7.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆?,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數(shù)關系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C8.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.49.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個 B.4個 C.3個 D.2個10.某校九年級共有1、2、3、4四個班,現(xiàn)從這四個班中隨機抽取兩個班進行一場籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.3二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:8x2-8xy+2y2=_________________________.12.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內(nèi)部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.13.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______14.計算:cos245°-tan30°sin60°=______.15.某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調(diào)查,要求每名學生只寫一類最喜歡的球類運動,以下是根據(jù)調(diào)查結果繪制的統(tǒng)計圖表的一部分那么,其中最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為____________%16.化簡:÷=_____.17.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.三、解答題(共7小題,滿分69分)18.(10分)如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.求證:四邊形OCED是矩形;若CE=1,DE=2,ABCD的面積是.19.(5分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.20.(8分)如圖,在菱形ABCD中,,點E在對角線BD上.將線段CE繞點C順時針旋轉(zhuǎn),得到CF,連接DF.(1)求證:BE=DF;(2)連接AC,若EB=EC,求證:.21.(10分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.22.(10分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發(fā),在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發(fā),沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數(shù)關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.23.(12分)如圖,菱形中,分別是邊的中點.求證:.24.(14分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區(qū)舉辦了一次冬奧知識網(wǎng)上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調(diào)查,過程如下,請補充完整.[收集數(shù)據(jù)]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績?nèi)缦?甲:乙:[整理、描述數(shù)據(jù)]按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):學校人數(shù)成績甲乙(說明:優(yōu)秀成績?yōu)椋己贸煽優(yōu)楹细癯煽優(yōu)?)[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:學校平均分中位數(shù)眾數(shù)甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績?yōu)閮?yōu)秀的概率為_;(3)根據(jù)以上數(shù)據(jù)推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
觀察可得最簡公分母是(x-3)(x+1),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】方程的兩邊同乘(x?3)(x+1),得(x?2)(x+1)=x(x?3),x2解得x=1.檢驗:把x=1代入(x?3)(x+1)=-4≠0.∴原方程的解為:x=1.故選B.【點睛】本題考查的知識點是解分式方程,解題關鍵是注意解得的解要進行檢驗.2、A【解析】
由拋物線的開口方向判斷a與2的關系,由拋物線與y軸的交點判斷c與2的關系,然后根據(jù)對稱軸判定b與2的關系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【詳解】①∵對稱軸在y軸右側(cè),∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據(jù)圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數(shù)).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關系,關鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).3、D【解析】
欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點A、B是雙曲線y=上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,
則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故選D.4、D【解析】
把點P的橫坐標減4,縱坐標減3可得P1的坐標;讓點P的縱坐標不變,橫坐標為原料坐標的相反數(shù)可得P2的坐標;讓點P的縱坐標的相反數(shù)為P3的橫坐標,橫坐標為P3的縱坐標即可.【詳解】∵點P(3,4),將點P先向左平移4個單位,再向下平移3個單位得到點P1,∴P1的坐標為(﹣1,1).∵點P關于y軸的對稱點是P2,∴P2(﹣3,4).∵將點P繞原點O按逆時針方向旋轉(zhuǎn)90°得到點P3,∴P3(﹣4,3).故選D.【點睛】本題考查了坐標與圖形的變化;用到的知識點為:左右平移只改變點的橫坐標,左減右加,上下平移只改變點的縱坐標,上加下減;兩點關于y軸對稱,縱坐標不變,橫坐標互為相反數(shù);(a,b)繞原點O按逆時針方向旋轉(zhuǎn)90°得到的點的坐標為(﹣b,a).5、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.6、A【解析】【分析】根據(jù)中心對稱圖形的定義逐項進行判斷即可得.【詳解】A、是中心對稱圖形,故此選項正確;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、不是中心對稱圖形,故此選項錯誤,故選A.【點睛】本題主要考查了中心對稱圖形,熟練掌握中心對稱圖形的定義是解題的關鍵;把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.7、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,看懂圖形,認真分析是解題的關鍵.8、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結合三個圓的半徑大小即可得到本題所求答案.9、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數(shù)共有3個.故選C.考點:等腰三角形的性質(zhì);勾股定理.10、B【解析】畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好抽到1班和2班的結果數(shù),然后根據(jù)概率公式求解.解:畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好抽到1班和2班的結果數(shù)為2,所以恰好抽到1班和2班的概率=212故選B.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
提取公因式1,再對余下的多項式利用完全平方公式繼續(xù)分解.完全平方公式:a1±1ab+b1=(a±b)1.【詳解】8x1-8xy+1y2=1(4x1-4xy+y2)=1(1x-y)1.故答案為:1(1x-y)1【點睛】此題考查的是提取公因式法和公式法分解因式,本題關鍵在于提取公因式可以利用完全平方公式進行二次因式分解.12、5【解析】
作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構建全等三角形和高線DH,設CM=a,根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)表示AC和AM的長,根據(jù)三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.,AG=CH=a+,根據(jù)AM=AG+MG,列方程可得結論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點睛】本題考查了等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關鍵,并利用方程的思想解決問題.13、1【解析】
根據(jù)DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點睛】本題主要考查相似三角形的判定和性質(zhì),正確寫出比例式是解題的關鍵.14、0【解析】
直接利用特殊角的三角函數(shù)值代入進而得出答案.【詳解】=.故答案為0.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.15、1%【解析】
依據(jù)最喜歡羽毛球的學生數(shù)以及占被調(diào)查總?cè)藬?shù)的百分比,即可得到被調(diào)查總?cè)藬?shù),進而得出最喜歡籃球的學生數(shù)以及最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比.【詳解】∵被調(diào)查學生的總數(shù)為10÷20%=50人,
∴最喜歡籃球的有50×32%=16人,
則最喜歡足球的學生數(shù)占被調(diào)查總?cè)藬?shù)的百分比=×100%=1%,
故答案為:1.【點睛】本題主要考查扇形統(tǒng)計圖,扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù).通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.16、m【解析】解:原式=?=m.故答案為m.17、A【解析】
根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【點睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)1.【解析】【分析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內(nèi)角為90度即可;(2)由菱形的對角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×1×2=1,故答案為1.【點睛】本題考查了矩形的判定與性質(zhì),菱形的性質(zhì),熟練掌握矩形的判定及性質(zhì)、菱形的性質(zhì)是解題的關鍵.19、(1)見解析;(2)12【解析】
(1)連接OC、BC,根據(jù)題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結論.(2)先根據(jù)題意證明出△PBC∽△PCA,再根據(jù)相似三角形的性質(zhì)得出邊的比值,由此可得出結論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切線.(2)∵AB是直徑∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【點睛】本題考查了切線與相似三角形的判定與性質(zhì),解題的關鍵是熟練的掌握切線的判定與相似三角形的判定與性質(zhì).20、證明見解析【解析】【分析】(1)根據(jù)菱形的性質(zhì)可得BC=DC,,再根據(jù),從而可得,繼而得=,由旋轉(zhuǎn)的性質(zhì)可得=,證明≌,即可證得=;(2)根據(jù)菱形的對角線的性質(zhì)可得,,從而得,由,可得,由(1)可知,可推得,即可得,問題得證.【詳解】(1)∵四邊形ABCD是菱形,∴,,∵,∴,∴,∵線段由線段繞點順時針旋轉(zhuǎn)得到,∴,在和中,,∴≌,∴;(2)∵四邊形ABCD是菱形,∴,,∴,∵,∴,由(1)可知,,∴,∴,∴.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握和應用相關的性質(zhì)與定理是解題的關鍵.21、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結合求出d的取值范圍.22、(1);(2)①;②;(3)t的值為或1或.【解析】
(1)先根據(jù)t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結論;(2)分兩種情況:①當Q在邊AC上運動時,②當Q在邊AB上運動時;分別根據(jù)勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關系式;(3)分別當⊙O與BC相切時、當⊙O與AB相切時,當⊙O與AC相切時三種情況分類討論即可確定答案.【詳解】(1)當t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當Q在邊AC上運動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當Q在邊AB上運動時,2<t<4如圖2,設⊙O與AB的另一個交點為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度裝配式房屋設計與承建綠色認證合同4篇
- 二零二五版鍋爐設備買賣合同附節(jié)能改造及安全運行指導3篇
- 二零二五年度汽車維護保養(yǎng)一體化服務合同3篇
- 二零二五年度企業(yè)分公司設立標準模板合同:全面規(guī)范分支機構組建4篇
- 二零二五年臨時建筑安裝工程合同范本4篇
- 2025年桶裝水行業(yè)質(zhì)量檢測服務合同范本
- 2025年度酒店前臺服務員勞動合同范本與實施細則3篇
- 2025年儲蓄貸款合同協(xié)議
- 2025年共有權房屋買賣合同
- 2025年度打樁工程環(huán)境保護合同3篇
- 國潮風中國風2025蛇年大吉蛇年模板
- GB/T 18724-2024印刷技術印刷品與印刷油墨耐各種試劑性的測定
- IEC 62368-1標準解讀-中文
- 15J403-1-樓梯欄桿欄板(一)
- 2024年中考語文名句名篇默寫分類匯編(解析版全國)
- 新煤礦防治水細則解讀
- 故障診斷技術的國內(nèi)外發(fā)展現(xiàn)狀
- 醫(yī)院領導班子集體議事決策制度
- 解讀2024年《學紀、知紀、明紀、守紀》全文課件
- 農(nóng)機維修市場前景分析
- 大學生《思想道德與法治》考試復習題及答案
評論
0/150
提交評論