版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市閔行區(qū)2024屆高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.年部分省市將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B.C. D.2.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-53.正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.4.已知正方體的棱長(zhǎng)為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.5.某大學(xué)計(jì)算機(jī)學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語(yǔ)音識(shí)別、人臉識(shí)別,數(shù)據(jù)分析、機(jī)器學(xué)習(xí)、服務(wù)器開發(fā)五個(gè)方向展開研究,且每個(gè)方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識(shí)別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種6.設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.7.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.8.某工廠利用隨機(jī)數(shù)表示對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測(cè)試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,……,599,600.從中抽取60個(gè)樣本,下圖提供隨機(jī)數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)是()A.324 B.522 C.535 D.5789.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.310.若復(fù)數(shù)滿足,則對(duì)應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.412.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.14.函數(shù)過定點(diǎn)________.15.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說“是乙或丙獲獎(jiǎng).”乙說:“甲、丙都未獲獎(jiǎng).”丙說:“我獲獎(jiǎng)了”.丁說:“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是__________.16.若一個(gè)正四面體的棱長(zhǎng)為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.18.(12分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長(zhǎng)為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.19.(12分)已知函數(shù).⑴當(dāng)時(shí),求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù).當(dāng)時(shí),求不等式的解集;,,求a的取值范圍.21.(12分)在中,.(1)求的值;(2)點(diǎn)為邊上的動(dòng)點(diǎn)(不與點(diǎn)重合),設(shè),求的取值范圍.22.(10分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.2、C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.3、D【解析】
由側(cè)棱與底面所成角及底面邊長(zhǎng)求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長(zhǎng)為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.4、A【解析】
根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長(zhǎng)的一半,所以球的半徑為,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計(jì)算.5、B【解析】
將人臉識(shí)別方向的人數(shù)分成:有人、有人兩種情況進(jìn)行分類討論,結(jié)合捆綁計(jì)算出不同的分配方法數(shù).【詳解】當(dāng)人臉識(shí)別方向有2人時(shí),有種,當(dāng)人臉識(shí)別方向有1人時(shí),有種,∴共有360種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)單排列組合問題,考查分類討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.6、B【解析】
由題意首先確定導(dǎo)函數(shù)的符號(hào),然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.時(shí),,時(shí),,當(dāng)或時(shí),;當(dāng)時(shí),.故選:【點(diǎn)睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點(diǎn)附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項(xiàng),是判斷圖像問題常見方法,有一定難度.7、D【解析】
依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.8、D【解析】
因?yàn)橐獙?duì)600個(gè)零件進(jìn)行編號(hào),所以編號(hào)必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復(fù)出現(xiàn)的舍去,直至得到第六個(gè)編號(hào).【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號(hào)內(nèi)的數(shù)據(jù)依次為:,因?yàn)?35重復(fù)出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個(gè)數(shù)據(jù)為578.選D.【點(diǎn)睛】本題考查了隨機(jī)數(shù)表表的應(yīng)用,正確掌握隨機(jī)數(shù)表法的使用方法是解題的關(guān)鍵.9、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿足,可知兩個(gè)向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對(duì)角線的平行四邊形是正方形,所以則.故選:.【點(diǎn)睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問題解決問題的能力,屬于基礎(chǔ)題.10、D【解析】
利用復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法化簡(jiǎn)復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對(duì)應(yīng)的點(diǎn),對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.11、C【解析】
計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.12、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長(zhǎng)的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長(zhǎng)的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當(dāng)時(shí),.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.14、【解析】
令,,與參數(shù)無(wú)關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無(wú)關(guān),所有過定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無(wú)關(guān),熟記常見函數(shù)的定點(diǎn)可以節(jié)省解題時(shí)間.15、丙【解析】若甲獲獎(jiǎng),則甲、乙、丙、丁說的都是錯(cuò)的,同理可推知乙、丙、丁獲獎(jiǎng)的情況,可知獲獎(jiǎng)的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.16、【解析】
將四面體補(bǔ)成一個(gè)正方體,通過正方體的對(duì)角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長(zhǎng)為1,所以正方體的棱長(zhǎng)為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對(duì)角線,即,解得,所以球的表面積為.【點(diǎn)睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對(duì)角線長(zhǎng),得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點(diǎn)分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實(shí)數(shù)a的取值范圍為試題解析:(I)當(dāng)時(shí),化為,當(dāng)時(shí),不等式化為,無(wú)解;當(dāng)時(shí),不等式化為,解得;當(dāng)時(shí),不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個(gè)頂點(diǎn)分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為18、(1)(2)見解析【解析】
(1)由,周長(zhǎng),解得,即可求得標(biāo)準(zhǔn)方程.(2)通過特殊情況的斜率不存在時(shí),求得,再證明的斜率存在時(shí),即可證得為定值.通過設(shè)直線的方程為與橢圓方程聯(lián)立,借助韋達(dá)定理求得,利用直線與圓相切,即,求得的關(guān)系代入,化簡(jiǎn)即可證得即可證得結(jié)論.【詳解】(1)由題意得,周長(zhǎng),且.聯(lián)立解得,,所以橢圓C的標(biāo)準(zhǔn)方程為.(2)①當(dāng)直線l的斜率不存在時(shí),不妨設(shè)其方程為,則,所以,即.②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,并設(shè),由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中定值問題,考查了學(xué)生計(jì)算求解能力,難度較難.19、(1)當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;(2)【解析】試題分析:(1),通過求導(dǎo)分析,得函數(shù)取得極小值為,無(wú)極大值;(2),所以,通過求導(dǎo)討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域?yàn)楫?dāng)時(shí),,所以所以當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;(2)設(shè)函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線相同,則所以所以,代入得:設(shè),則不妨設(shè)則當(dāng)時(shí),,當(dāng)時(shí),所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設(shè),則對(duì)恒成立,所以在區(qū)間上單調(diào)遞增,又所以當(dāng)時(shí),即當(dāng)時(shí),又當(dāng)時(shí)因此當(dāng)時(shí),函數(shù)必有零點(diǎn);即當(dāng)時(shí),必存在使得成立;即存在使得函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線相同.又由得:所以單調(diào)遞減,因此所以實(shí)數(shù)的取值范圍是.20、(1);(2).【解析】
(1)當(dāng)時(shí),,①當(dāng)時(shí),,令,即,解得,②當(dāng)時(shí),,顯然成立,所以,③當(dāng)時(shí),,令,即,解得,綜上所述,不等式的解集為.(2)因?yàn)?,因?yàn)?,有成立,所以只需,解得,所以a的取值范圍為.【點(diǎn)睛】絕對(duì)值不等式的解法:法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.21、(1)(2)【解析】
(1)先利用同角的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年電子設(shè)備借款合同精簡(jiǎn)版
- 2024年能源管理服務(wù)合同(含空調(diào)系統(tǒng))
- 2024無(wú)人機(jī)航拍技術(shù)服務(wù)合同
- 2025版精細(xì)化管理房產(chǎn)買賣代理合同范本3篇
- 2024暑假校園兼職人員服務(wù)合同3篇
- 2024年融資租賃合同終止協(xié)議
- 應(yīng)對(duì)壓力的職場(chǎng)方法計(jì)劃
- 2024年生物科技實(shí)驗(yàn)室租賃合同
- 裝飾設(shè)計(jì)行業(yè)安全生產(chǎn)工作總結(jié)
- 室內(nèi)設(shè)計(jì)業(yè)會(huì)計(jì)工作總結(jié)
- 曳引驅(qū)動(dòng)電梯調(diào)試作業(yè)指導(dǎo)書
- 基礎(chǔ)會(huì)計(jì)課程思政教案設(shè)計(jì)
- 蘇教版科學(xué)小學(xué)五年級(jí)上冊(cè)期末測(cè)試卷及完整答案(奪冠系列)
- 經(jīng)皮肝穿刺膽道引流(PTCD)導(dǎo)管的護(hù)理要點(diǎn)
- 國(guó)家開放大學(xué)《心理學(xué)》形考任務(wù)1-4參考答案
- 2024年社會(huì)工作者《社會(huì)工作實(shí)務(wù)(中級(jí))》考試真題必考題
- FZ∕T 74001-2020 紡織品 針織運(yùn)動(dòng)護(hù)具
- MOOC 作物育種學(xué)-四川農(nóng)業(yè)大學(xué) 中國(guó)大學(xué)慕課答案
- 汽車租賃服務(wù)投標(biāo)方案(技術(shù)方案2)
- 2024年中考語(yǔ)文名著閱讀《儒林外史》內(nèi)容簡(jiǎn)介、主要人物形象及相關(guān)練習(xí)
- 流浪乞討人員救助工作總結(jié)
評(píng)論
0/150
提交評(píng)論