版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省棗陽一中2024年高三二診模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,且,則在方向上的投影為()A. B. C. D.2.設全集集合,則()A. B. C. D.3.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.4.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.15.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.46.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.7.集合,則()A. B. C. D.8.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元9.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.10.中,點在邊上,平分,若,,,,則()A. B. C. D.11.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.312.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關系(用不等號連接)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.14.小李參加有關“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.15.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.16.已知向量滿足,且,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調性;(2)證明:函數(shù)f(x)在R上有且僅有兩個零點.18.(12分)已知向量,.(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.19.(12分)已知函數(shù).(1)討論的單調性;(2)若恒成立,求實數(shù)的取值范圍.20.(12分)選修4-5:不等式選講設函數(shù).(1)當時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.21.(12分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.22.(10分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關系是解題關鍵.2、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.3、D【解析】
使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.4、A【解析】
由題意得到關于的等式,結合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數(shù)學應用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.5、B【解析】
解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關系.6、C【解析】
先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.7、D【解析】
利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.8、A【解析】
根據(jù)2018年的家庭總收人為元,且就醫(yī)費用占得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占所以就醫(yī)費用因為年的就醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.9、C【解析】
建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數(shù)方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.10、B【解析】
由平分,根據(jù)三角形內角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.11、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.12、A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關于原點對稱);(2)函數(shù)關于點對稱,函數(shù)關于直線對稱,(3)函數(shù)周期為T,則二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結合側視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應體積公式求解.14、【解析】
從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點睛】此題考查根據(jù)古典概型求概率,關鍵在于根據(jù)題意準確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).15、0或6【解析】
計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關系求參數(shù),意在考查學生的計算能力和轉化能力。16、【解析】
由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】
(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當x變化時,f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調遞減極小值單調遞增極大值單調遞減極小值單調遞增所以f(x)在區(qū)間,上單調遞減,在區(qū)間,上單調遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個零點.顯然x∈(π,2π)時,?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時,f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點.因為f(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時,f(x)>1,即f(x)在(?∞,?π)上也沒有零點.故f(x)僅在,上各有一個零點,即f(x)在R上有且僅有兩個零點.18、(1);(2)或【解析】
(1)利用平面向量數(shù)量積的坐標運算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結合范圍,可求的值,由余弦定理可求的值,進而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當時,由余弦定理得即,解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數(shù)量積的坐標運算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應用,考查了轉化思想和分類討論思想,屬于基礎題.19、(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2).【解析】
(1)對a分三種情況討論求出函數(shù)的單調性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當時,,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增.綜上:當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)由(1)可知:當時,,∴成立.當時,,,∴.當時,,,∴,即.綜上.【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調性和不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1);(2)【解析】
(1)當時,將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對分成三種情況,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,根據(jù)單調性求得的取值范圍.【詳解】(1)時,可得,即,化簡得:,所以不等式的解集為.(2)①當時,由函數(shù)單調性可得,解得;②當時,,所以符合題意;③當時,由函數(shù)單調性可得,,解得綜上,實數(shù)的取值范圍為【點睛】本小題主要考查含有絕對值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.21、(1)(2)【解析】
(1)運用三角形面積公式求出的長度,然后再運用余弦定理求出的長.(2)運用正弦定理分別表示出和,結合已知條件計算出結果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程部年終總結報告
- 二零二五年度合資成立人工智能技術研發(fā)合作協(xié)議3篇
- 第一次月考測評卷Lesson1 ~ lesson3-2024-2025學年科普版(三起)英語四年級上冊含答案
- 貴州師范大學《播音創(chuàng)作基礎》2023-2024學年第一學期期末試卷
- Unit 1 How can I get there?(說課稿)-2024-2025學年人教PEP版英語六年級上冊
- 貴州黔南經濟學院《動畫表演》2023-2024學年第一學期期末試卷
- 二零二五年度建筑工程債權轉讓與安全文明施工協(xié)議3篇
- DB32-T 1264-2024 天目湖白茶質量分級
- 貴州理工學院《模擬電子學基礎》2023-2024學年第一學期期末試卷
- 貴州農業(yè)職業(yè)學院《電路理論》2023-2024學年第一學期期末試卷
- 《人力資源情緒管理問題研究開題報告(含提綱)》
- 哮喘吸入裝置的正確使用方法課件
- 2023年成都東部集團有限公司招聘筆試題庫及答案解析
- 角點網格一.角點網格定義
- 聚酯合成反應動力學
- 自動控制原理全套課件
- 視頻監(jiān)控室值班記錄表
- 歌曲《梁?!泛喿V完整版
- 小學語文教研組期末考試質量分析
- 校園安全存在問題及對策
- 鉆井作業(yè)常見安全隱患
評論
0/150
提交評論