版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省天一大聯(lián)考“頂尖計劃”2024屆高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.2.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.3.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.4.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種5.的內(nèi)角的對邊分別為,已知,則角的大小為()A. B. C. D.6.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.7.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.8.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.9.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb10.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.11.雙曲線的漸近線方程是()A. B. C. D.12.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則繞所在直線旋轉(zhuǎn)一周所形成的幾何體的表面積為______________.14.在平面直角坐標系中,曲線上任意一點到直線的距離的最小值為________.15.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.16.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設(shè)點的極坐標為,求點到線段中點的距離.18.(12分)在中,、、的對應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點,求的長.19.(12分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.20.(12分)一酒企為擴大生產(chǎn)規(guī)模,決定新建一個底面為長方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發(fā)酵池造價總費用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時,發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設(shè)計,可使得發(fā)酵館占地面積最小.21.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設(shè)直線l與曲線C相交于A,B兩點,且,求r的值.22.(10分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)a的范圍;(2)若函數(shù)有兩個極值點,且存在滿足,令函數(shù),試判斷零點的個數(shù)并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.2、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關(guān)系式.3、B【解析】
根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.4、B【解析】
首先將五天進行分組,再對名著進行分配,根據(jù)分步乘法計數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數(shù)原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數(shù)原理的應(yīng)用,易錯點是忽略分組中涉及到的平均分組問題.5、A【解析】
先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因為,則,而,所以.故選:A【點睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.6、D【解析】
由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.7、D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.8、D【解析】
直接利用復(fù)數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復(fù)數(shù)的模的運算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計算能力.9、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.10、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.11、C【解析】
根據(jù)雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認真審題,注意雙曲線的簡單性質(zhì)的合理運用.12、B【解析】試題分析:由題意故選B.考點:正態(tài)分布二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐側(cè)面積計算公式可得.【詳解】解:由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【點睛】本題考查旋轉(zhuǎn)體的表面積計算問題,屬于基礎(chǔ)題.14、【解析】
解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標,再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當且僅當時,即當時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點的切線與直線平行,則,解得,當時,到直線的距離;當時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉(zhuǎn)化為利用切線與直線平行來找出切點,轉(zhuǎn)化為切點到直線的距離,也可以設(shè)曲線上的動點坐標,利用基本不等式法或函數(shù)的最值進行求解,考查分析問題和解決問題的能力,屬于中等題.15、【解析】
(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內(nèi)部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.16、1【解析】
根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.【點睛】本題考查了程序框圖,意在考查學(xué)生的計算能力和理解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據(jù)兩點間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,直線的方程與曲線的方程聯(lián)立,化簡可得,解得,所以兩點坐標為,所以,由兩點間距離公式可得.【點睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標與直角坐標的轉(zhuǎn)化,點到直線距離公式應(yīng)用,兩點間距離公式的應(yīng)用,直線與圓交點坐標求法,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點睛】本題主要考查了正弦定理和余弦定理的運用.考查了學(xué)生對三角函數(shù)基礎(chǔ)知識的綜合運用.19、(1)(2)證明見解析;定點坐標為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時滿足∴∴直線恒過定點【點睛】涉及橢圓的弦長、中點、距離等相關(guān)問題時,一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.20、(1)(2)當時,,米時,發(fā)酵館的占地面積最??;當時,時,發(fā)酵館的占地面積最?。划敃r,米時,發(fā)酵館的占地面積最小.【解析】
(1)設(shè)米,總費用為,解即可得解;(2)結(jié)合(1)可得占地面積結(jié)合導(dǎo)函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設(shè)米,則米,由題意知:,得,設(shè)總費用為,則,解得:,又,故,所以發(fā)酵池邊長的范圍是不小于15米,且不超過25米;(2)設(shè)發(fā)酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發(fā)酵館的占地面積最??;②時,,在上遞減,則,即米時,發(fā)酵館的占地面積最??;③時,時,,遞減;時,遞增,因此,即時,發(fā)酵館的占地面積最小;綜上所述:當時,,米時,發(fā)酵館的占地
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生態(tài)旅游度假區(qū)招投標申請表
- 社會保險管理與城市規(guī)劃
- 石油化工設(shè)備使用與管理
- 水上樂園水電布線施工合同
- 農(nóng)村燃氣個人承包施工合同
- 2024年跨國醫(yī)療設(shè)備采購與技術(shù)支持合同
- 2024年河南漯河事業(yè)單位選拔100位人才3篇
- 2024年鏟車安全巡查記錄表3篇
- 2025年度跨境電商擔保抵押合同范本2篇
- 2025版物流園區(qū)土地及建筑物租賃承包協(xié)議3篇
- 采購合同范例壁布
- 公司員工出差車輛免責(zé)協(xié)議書
- 2024年陜西榆林市神木市公共服務(wù)輔助人員招聘775人歷年管理單位遴選500模擬題附帶答案詳解
- 2024年度抖音短視頻拍攝制作服務(wù)合同范本3篇
- 2024-2025學(xué)年高二上學(xué)期期末數(shù)學(xué)試卷(提高篇)(含答案)
- 安全生產(chǎn)事故案例分析
- 2024年07月22208政治學(xué)原理期末試題答案
- 期末檢測卷(一)(試卷)-2024-2025學(xué)年外研版(三起)英語六年級上冊(含答案含聽力原文無音頻)
- 《客戶開發(fā)技巧》課件
- 《防范于心反詐于行》中小學(xué)防范電信網(wǎng)絡(luò)詐騙知識宣傳課件
- 口腔執(zhí)業(yè)醫(yī)師定期考核試題(資料)帶答案
評論
0/150
提交評論