版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省寶塔實(shí)驗(yàn)重點(diǎn)達(dá)標(biāo)名校2024年中考數(shù)學(xué)模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,AB∥CD,點(diǎn)E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°2.如圖,在矩形ABCD中,AB=,AD=2,以點(diǎn)A為圓心,AD的長為半徑的圓交BC邊于點(diǎn)E,則圖中陰影部分的面積為()A. B. C. D.3.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.4.某籃球運(yùn)動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分5.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm6.若a與5互為倒數(shù),則a=()A. B.5 C.-5 D.7.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點(diǎn)的半徑D.垂直于同一直線的兩條直線互相垂直8.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-19.如果,那么的值為()A.1 B.2 C. D.10.已知x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣311.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣112.一組數(shù)據(jù)是4,x,5,10,11共五個數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.11二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,AP=2,BP=6,∠APC=30°,則CD的長為_______.14.如圖,在四邊形中,,,,,,點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動,點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動,、兩點(diǎn)同時出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時另一點(diǎn)也停止運(yùn)動.若,當(dāng)__時,是等腰三角形.15.在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成一個圓錐,則圓錐的高為______.16.在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(m,7),(3m﹣1,7),若線段AB與直線y=﹣2x﹣1相交,則m的取值范圍為__.17.已知拋物線的部分圖象如圖所示,根據(jù)函數(shù)圖象可知,當(dāng)y>0時,x的取值范圍是__.18.已知,則______三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解分式方程:x+1x-1-20.(6分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O,⊙O與AC相切于點(diǎn)D,BE⊥AB交AC的延長線于點(diǎn)E,與⊙O相交于G、F兩點(diǎn).(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?21.(6分)解方程:xx+1+222.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點(diǎn),D是BC的中點(diǎn),CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結(jié)EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求23.(8分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.24.(10分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點(diǎn)D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)25.(10分)如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于D.(1)求證:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半徑.26.(12分)已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△OAB的頂點(diǎn)A、B的坐標(biāo)分別是A(0,5),B(3,1),過點(diǎn)B畫BC⊥AB交直線y=-m(m>54)于點(diǎn)C,連結(jié)AC,以點(diǎn)A為圓心,AC為半徑畫弧交x軸負(fù)半軸于點(diǎn)D,連結(jié)AD(1)求證:△ABC≌△AOD.(2)設(shè)△ACD的面積為s,求s關(guān)于m的函數(shù)關(guān)系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.27.(12分)自學(xué)下面材料后,解答問題。分母中含有未知數(shù)的不等式叫分式不等式。如:<0等。那么如何求出它們的解集呢?根據(jù)我們學(xué)過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負(fù)。其字母表達(dá)式為:若a>0,b>0,則>0;若a<0,b<0,則>0;若a>0,b<0,則<0;若a<0,b>0,則<0.反之:若>0,則或,(1)若<0,則___或___.(2)根據(jù)上述規(guī)律,求不等式>0的解集.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點(diǎn):1.平行線的性質(zhì);2.平角性質(zhì).2、B【解析】
先利用三角函數(shù)求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據(jù)扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進(jìn)行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點(diǎn)睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補(bǔ)法.求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.3、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點(diǎn):簡單組合體的三視圖.4、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點(diǎn)睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項(xiàng),注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).5、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點(diǎn):圓錐的計算.6、A【解析】分析:當(dāng)兩數(shù)的積為1時,則這兩個數(shù)互為倒數(shù),根據(jù)定義即可得出答案.詳解:根據(jù)題意可得:5a=1,解得:a=,故選A.點(diǎn)睛:本題主要考查的是倒數(shù)的定義,屬于基礎(chǔ)題型.理解倒數(shù)的定義是解題的關(guān)鍵.7、C【解析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯誤,垂直于同一直線的兩條直線平行.故選C.8、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當(dāng)1-a=0時,即a=1,整式方程無解,當(dāng)x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點(diǎn)睛:本題考查了分式方程的解,解決本題的關(guān)鍵是熟記分式方程無解的條件.9、D【解析】
先對原分式進(jìn)行化簡,再尋找化簡結(jié)果與已知之間的關(guān)系即可得出答案.【詳解】故選:D.【點(diǎn)睛】本題主要考查分式的化簡求值,掌握分式的基本性質(zhì)是解題的關(guān)鍵.10、A【解析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系和整體代入思想即可得解.【詳解】∵x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點(diǎn)睛】本題主要考查一元二次方程的根與系數(shù)的關(guān)系(韋達(dá)定理),韋達(dá)定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實(shí)數(shù)根x1,x2,那么x1+x2=-ba,x1x2=11、A【解析】
根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點(diǎn)睛】本題考查的知識點(diǎn)是絕對值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.12、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點(diǎn):3.眾數(shù);3.算術(shù)平均數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
如圖,作OH⊥CD于H,連結(jié)OC,根據(jù)垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據(jù)含30°的直角三角形的性質(zhì)計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【詳解】解:如圖,作OH⊥CD于H,連結(jié)OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【點(diǎn)睛】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質(zhì),解此題的關(guān)鍵在于作輔助線得到直角三角形,再合理利用各知識點(diǎn)進(jìn)行計算即可14、或.【解析】
根據(jù)題意,用時間t表示出DQ和PC,然后根據(jù)等腰三角形腰的情況分類討論,①當(dāng)時,畫出對應(yīng)的圖形,可知點(diǎn)在的垂直平分線上,QE=,AE=BP,列出方程即可求出t;②當(dāng)時,過點(diǎn)作于,根據(jù)勾股定理求出PQ,然后列出方程即可求出t.【詳解】解:由運(yùn)動知,,,,,,,是等腰三角形,且,①當(dāng)時,過點(diǎn)P作PE⊥AD于點(diǎn)E點(diǎn)在的垂直平分線上,QE=,AE=BP,,,②當(dāng)時,如圖,過點(diǎn)作于,,,,,四邊形是矩形,,,,在中,,,,點(diǎn)在邊上,不和重合,,,此種情況符合題意,即或時,是等腰三角形.故答案為:或.【點(diǎn)睛】此題考查的是等腰三角形的定義和動點(diǎn)問題,掌握等腰三角形的定義和分類討論的數(shù)學(xué)思想是解決此題的關(guān)鍵.15、cm【解析】
利用已知得出底面圓的半徑為:1cm,周長為2πcm,進(jìn)而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.【點(diǎn)睛】此題主要考查了圓錐展開圖與原圖對應(yīng)情況,以及勾股定理等知識,根據(jù)已知得出母線長是解決問題的關(guān)鍵.16、﹣4≤m≤﹣1【解析】
先求出直線y=7與直線y=﹣2x﹣1的交點(diǎn)為(﹣4,7),再分類討論:當(dāng)點(diǎn)B在點(diǎn)A的右側(cè),則m≤﹣4≤3m﹣1,當(dāng)點(diǎn)B在點(diǎn)A的左側(cè),則3m﹣1≤﹣4≤m,然后分別解關(guān)于m的不等式組即可.【詳解】解:當(dāng)y=7時,﹣2x﹣1=7,解得x=﹣4,所以直線y=7與直線y=﹣2x﹣1的交點(diǎn)為(﹣4,7),當(dāng)點(diǎn)B在點(diǎn)A的右側(cè),則m≤﹣4≤3m﹣1,無解;當(dāng)點(diǎn)B在點(diǎn)A的左側(cè),則3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范圍為﹣4≤m≤﹣1,故答案為﹣4≤m≤﹣1.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)直線y=﹣2x﹣1與線段AB有公共點(diǎn)找出關(guān)于m的一元一次不等式組是解題的關(guān)鍵.17、【解析】
根據(jù)拋物線的對稱軸以及拋物線與x軸的一個交點(diǎn),確定拋物線與x軸的另一個交點(diǎn),再結(jié)合圖象即可得出答案.【詳解】解:根據(jù)二次函數(shù)圖象可知:拋物線的對稱軸為直線,與x軸的一個交點(diǎn)為(-1,0),∴拋物線與x軸的另一個交點(diǎn)為(3,0),結(jié)合圖象可知,當(dāng)y>0時,即x軸上方的圖象,對應(yīng)的x的取值范圍是,故答案為:.【點(diǎn)睛】本題考查了二次函數(shù)與不等式的問題,解題的關(guān)鍵是通過圖象確定拋物線與x軸的另一個交點(diǎn),并熟悉二次函數(shù)與不等式的關(guān)系.18、34【解析】∵,∴=,故答案為34.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、方程無解【解析】
找出分式方程的最簡公分母,去分母后轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,再代入最簡公分母進(jìn)行檢驗(yàn)即可.【詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【點(diǎn)睛】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗(yàn)根.20、(2)證明見試題解析;(2).【解析】
(2)過點(diǎn)O作OM⊥AB于M,證明OM=圓的半徑OD即可;(2)過點(diǎn)O作ON⊥BE,垂足是N,連接OF,得到四邊形OMBN是矩形,在直角△OBM中利用三角函數(shù)求得OM和BM的長,進(jìn)而求得BN和ON的長,在直角△ONF中利用勾股定理求得NF,則BF即可求解.【詳解】解:(2)過點(diǎn)O作OM⊥AB,垂足是M.∵⊙O與AC相切于點(diǎn)D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB與⊙O相切;(2)過點(diǎn)O作ON⊥BE,垂足是N,連接OF.∵O是BC的中點(diǎn),∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考點(diǎn):2.切線的判定與性質(zhì);2.勾股定理;3.解直角三角形;4.綜合題.21、-3【解析】試題分析:解得x=-3經(jīng)檢驗(yàn):x=-3是原方程的根.∴原方程的根是x=-3考點(diǎn):解一元一次方程點(diǎn)評:在中考中比較常見,在各種題型中均有出現(xiàn),一般難度不大,要熟練掌握.22、(1)證明見解析;(2)EH=【解析】
(1)由題意推出∠EHB=∠OCB,(2)結(jié)合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點(diǎn),∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點(diǎn)睛】本題考查的知識點(diǎn)是圓與相似三角形,解題的關(guān)鍵是熟練的掌握圓與相似三角形.23、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】
(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo).(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當(dāng)0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當(dāng)<t<3時,如答圖3所示,此時重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點(diǎn)在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)的坐標(biāo)為.如答圖1所示,過點(diǎn)作軸于點(diǎn)M,則,,.過點(diǎn)作于點(diǎn),則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設(shè)直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個單位得到,∴直線的解析式為:;設(shè)直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當(dāng)時,如答圖2所示:設(shè)與交于點(diǎn),可得,.設(shè)與的交點(diǎn)為,則:.解得,∴..(2)當(dāng)時,如答圖3所示:設(shè)分別與交于點(diǎn)、點(diǎn).∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關(guān)系式為:.24、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點(diǎn):解直角三角形的應(yīng)用25、(1)見解析;(2)【解析】分析:(1)首先連接CO,根據(jù)CD與⊙O相切于點(diǎn)C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設(shè)CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.詳解:(1)證明:如圖,連接CO,,∵CD與⊙O相切于點(diǎn)C,∴∠OCD=90°,∵AB是圓O的直徑,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:設(shè)CD為x,則AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半徑是.點(diǎn)睛:此題主要考查了切線的性質(zhì)和應(yīng)用,以及勾股定理的應(yīng)用,要熟練掌握.26、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點(diǎn)間的距離公式計算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;(2)過點(diǎn)B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質(zhì)得S△AOBS△ACD=(ABAC)2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 精準(zhǔn)扶貧調(diào)研報告范文-3篇
- 2025年度白蟻防制與建筑節(jié)能改造技術(shù)服務(wù)合同3篇
- 2025年度全國高速公路貨運(yùn)線路承包服務(wù)合同3篇
- 二零二五年度二手房出售含稅費(fèi)結(jié)算協(xié)助委托協(xié)議
- 二零二五年度體育賽事贊助合同:品牌贊助與市場營銷協(xié)議
- 2025年年第三方檢測合作協(xié)議書
- 2025年高壓化成箔合作協(xié)議書
- 二零二五年度光纜基站場地租賃及光纜鋪設(shè)合同3篇
- 2025版高速公路建設(shè)項(xiàng)目工程借款合同規(guī)范樣本3篇
- 2025年度學(xué)校教室內(nèi)外裝飾工程合同樣本3篇
- 2024年中國消防救援學(xué)院第二批面向應(yīng)屆畢業(yè)生招聘28人歷年【重點(diǎn)基礎(chǔ)提升】模擬試題(共500題)附帶答案詳解
- 食品加工代工配方保密協(xié)議
- QCT1067.5-2023汽車電線束和電器設(shè)備用連接器第5部分:設(shè)備連接器(插座)的型式和尺寸
- 《YST 550-20xx 金屬熱噴涂層剪切強(qiáng)度的測定》-編制說明送審
- 江西省上饒市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量測試物理試題(解析版)
- 2024年財務(wù)風(fēng)險評估和控制培訓(xùn)資料
- 2024建筑消防設(shè)施檢測報告書模板
- 兒童流行性感冒的護(hù)理
- 萬科保安公司測評題及答案
- 揭露煤層、貫通老空專項(xiàng)安全技術(shù)措施
- 醫(yī)美項(xiàng)目水光培訓(xùn)課件
評論
0/150
提交評論