江蘇省鹽城市獐溝中學2023-2024學年中考數學模擬試題含解析_第1頁
江蘇省鹽城市獐溝中學2023-2024學年中考數學模擬試題含解析_第2頁
江蘇省鹽城市獐溝中學2023-2024學年中考數學模擬試題含解析_第3頁
江蘇省鹽城市獐溝中學2023-2024學年中考數學模擬試題含解析_第4頁
江蘇省鹽城市獐溝中學2023-2024學年中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市獐溝中學2023-2024學年中考數學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.2.如圖,將函數的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是()A. B. C. D.3.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.4.在直角坐標系中,設一質點M自P0(1,0)處向上運動一個單位至P1(1,1),然后向左運動2個單位至P2處,再向下運動3個單位至P3處,再向右運動4個單位至P4處,再向上運動5個單位至P5處……,如此繼續(xù)運動下去,設Pn(xn,yn),n=1,2,3,……,則x1+x2+……+x2018+x2019的值為()A.1 B.3 C.﹣1 D.20195.利用“分形”與“迭代”可以制作出很多精美的圖形,以下是制作出的幾個簡單圖形,其中是軸對稱但不是中心對稱的圖形是()A. B. C. D.6.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°7.如圖,已知兩個全等的直角三角形紙片的直角邊分別為、,將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有()A.3個; B.4個; C.5個; D.6個.8.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.9.下列計算中,正確的是()A. B. C. D.10.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長為()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.__.12.分解因式:4a2-4a+1=______.13.點P的坐標是(a,b),從-2,-1,0,1,2這五個數中任取一個數作為a的值,再從余下的四個數中任取一個數作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.14.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.15.如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務,當海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為_____km.16.拋擲一枚均勻的硬幣,前3次都正面朝上,第4次正面朝上的概率為________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,二次函數的圖象與軸交于,兩點,與軸交于點,點的坐標為.(1)求二次函數的解析式;(2)若點是拋物線在第四象限上的一個動點,當四邊形的面積最大時,求點的坐標,并求出四邊形的最大面積;(3)若為拋物線對稱軸上一動點,直接寫出使為直角三角形的點的坐標.18.(8分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯(lián)結DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.19.(8分)如圖,內接于,,的延長線交于點.(1)求證:平分;(2)若,,求和的長.20.(8分)如圖,在邊長為1個單位長度的小正方形組成的12×12網格中建立平面直角坐標系,格點△ABC(頂點是網格線的交點)的坐標分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)將△ABC繞點O逆時針旋轉90°得到△DEF,畫出△DEF;(2)以O為位似中心,將△ABC放大為原來的2倍,在網格內畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應點P1的坐標為.21.(8分)已知關于x的一元二次方程.求證:方程有兩個不相等的實數根;如果方程的兩實根為,,且,求m的值.22.(10分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.23.(12分)如圖,在中,,且,,為的中點,于點,連結,.(1)求證:;(2)當為何值時,的值最大?并求此時的值.24.計算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.2、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數的圖是將函數y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數圖象變換以及矩形的面積求法等知識,根據已知得出AA′的長度是解題關鍵.3、C【解析】

結合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關鍵.4、C【解析】

根據各點橫坐標數據得出規(guī)律,進而得出x+x+…+x;經過觀察分析可得每4個數的和為2,把2019個數分為505組,即可得到相應結果.【詳解】解:根據平面坐標系結合各點橫坐標得出:x1、x2、x3、x4、x5、x6、x7、x8的值分別為:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分別為:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故選C.【點睛】此題主要考查規(guī)律型:點的坐標,解題關鍵在于找到其規(guī)律5、A【解析】

根據:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.逐個按要求分析即可.【詳解】選項A,是軸對稱圖形,不是中心對稱圖形,故可以選;選項B,是軸對稱圖形,也是中心對稱圖形,故不可以選;選項C,不是軸對稱圖形,是中心對稱圖形,故不可以選;選項D,是軸對稱圖形,也是中心對稱圖形,故不可以選.故選A【點睛】本題考核知識點:軸對稱圖形和中心對稱圖形.解題關鍵點:理解軸對稱圖形和中心對稱圖形定義.

錯因分析容易題.失分的原因是:沒有掌握軸對稱圖形和中心對稱圖形的定義.

6、D【解析】

①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.7、B【解析】分析:直接利用軸對稱圖形的性質進而分析得出答案.詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.故選B.點睛:本題主要考查了全等三角形的性質和軸對稱圖形,正確把握軸對稱圖形的性質是解題的關鍵.8、D【解析】試題解析:設現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組9、D【解析】

根據積的乘方、合并同類項、同底數冪的除法以及冪的乘方進行計算即可.【詳解】A、(2a)3=8a3,故本選項錯誤;B、a3+a2不能合并,故本選項錯誤;C、a8÷a4=a4,故本選項錯誤;D、(a2)3=a6,故本選項正確;故選D.【點睛】本題考查了積的乘方、合并同類項、同底數冪的除法以及冪的乘方,掌握運算法則是解題的關鍵.10、A【解析】試題分析:由角平分線和線段垂直平分線的性質可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點:線段垂直平分線的性質二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】

根據去括號法則和合并同類二次根式法則計算即可.【詳解】解:原式故答案為:【點睛】此題考查的是二次根式的加減運算,掌握去括號法則和合并同類二次根式法則是解決此題的關鍵.12、【解析】

根據完全平方公式的特點:兩項平方項的符號相同,另一項是兩底數積的2倍,本題可用完全平方公式分解因式.【詳解】解:.故答案為.【點睛】本題考查用完全平方公式法進行因式分解,能用完全平方公式法進行因式分解的式子的特點需熟練掌握.13、【解析】畫樹狀圖為:共有20種等可能的結果數,其中點P(a,b)在平面直角坐標系中第二象限內的結果數為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.14、【解析】【分析】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據相似三角形對應邊的比可得結論.【詳解】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質和判定、兩點之間線段最短、垂線段最短等知識,解題的關鍵是靈活運用軸對稱以及垂線段最短解決最短問題.15、40【解析】

首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問題.【詳解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由題意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2×20×=40(km),故答案為40.【點睛】本題考查解直角三角形的應用﹣方向角問題,解題的關鍵是證明PB=BC,推出∠C=30°.16、【解析】

根據概率的計算方法求解即可.【詳解】∵第4次拋擲一枚均勻的硬幣時,正面和反面朝上的概率相等,∴第4次正面朝上的概率為.故答案為:.【點睛】此題考查了概率公式的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.三、解答題(共8題,共72分)17、(1);(2)P點坐標為,;(3)或或或.【解析】

(1)根據待定系數法把A、C兩點坐標代入可求得二次函數的解析式;

(2)由拋物線解析式可求得B點坐標,由B、C坐標可求得直線BC解析式,可設出P點坐標,用P點坐標表示出四邊形ABPC的面積,根據二次函數的性質可求得其面積的最大值及P點坐標;

(3)首先設出Q點的坐標,則可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三種情況,求解即可.【詳解】解:(1)∵A(-1,0),在上,,解得,∴二次函數的解析式為;(2)在中,令可得,解得或,,且,∴經過、兩點的直線為,設點的坐標為,如圖,過點作軸,垂足為,與直線交于點,則,,∴當時,四邊形的面積最大,此時P點坐標為,∴四邊形的最大面積為;(3),∴對稱軸為,∴可設點坐標為,,,,,,為直角三角形,∴有、和三種情況,①當時,則有,即,解得或,此時點坐標為或;②當時,則有,即,解得,此時點坐標為;③當時,則有,即,解得,此時點坐標為;綜上可知點的坐標為或或或.【點睛】本題考查了待定系數法、三角形的面積、二次函數的性質、勾股定理、方程思想及分類討論思想等知識,注意分類討論思想的應用.18、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】

(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,∴拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),當y=0時,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當x=0時,y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質和等腰三角形的性質;會利用待定系數法求函數解析式;靈活應用等腰直角三角形的性質進行幾何計算;理解坐標與圖形性質,記住兩點間的距離公式.19、(1)證明見解析;(2)AC=,CD=,【解析】分析:(1)延長AO交BC于H,連接BO,證明A、O在線段BC的垂直平分線上,得出AO⊥BC,再由等腰三角形的性質即可得出結論;(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑,由圓周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,證出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位線定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的長即可.本題解析:解:(1)證明:延長AO交BC于H,連接BO.∵AB=AC,OB=OC,∴A,O在線段BC的垂直平分線上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位線.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.點睛:本題考查了等腰三角形的判定與性質、三角函數及圓的有關計算,(1)中由三線合一定理求解是解題的關鍵,(2)中由圓周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函數及三角形中位線定理求出AC即可,本題綜合性強,有一定難度.20、(1)見解析;(2)見解析,(﹣2x,﹣2y).【解析】

(1)利用網格特點和旋轉的性質畫出點A、B、C的對應點D、E、F,即可得到△DEF;(2)先根據位似中心的位置以及放大的倍數,畫出原三角形各頂點的對應頂點,再順次連接各頂點,得到△A1B1C1,根據△A1B1C1結合位似的性質即可得P1的坐標.【詳解】(1)如圖所示,△DEF即為所求;(2)如圖所示,△A1B1C1即為所求,這次變換后的對應點P1的坐標為(﹣2x,﹣2y),故答案為(﹣2x,﹣2y).【點睛】本題主要考查了位似變換與旋轉變換,解決問題的關鍵是先作出圖形各頂點的對應頂點,再連接各頂點得到新的圖形.在畫位似圖形時需要注意,位似圖形的位似中心可能在兩個圖形之間,也可能在兩個圖形的同側.21、(1)證明見解析(1)1或1【解析】試題分析:(1)要證明方程有兩個不相等的實數根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據根與系數的關系可以得到關于m的方程,從而可以求得m的值.試題解析:(1)證明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有兩個不相等的實數根;(1)∵,方程的兩實根為,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.22、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數定義即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論