




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
超實(shí)數(shù)是“數(shù)〃嗎?
超實(shí)數(shù)是“數(shù)”嗎?
在我們國(guó)內(nèi),普遍認(rèn)為:超實(shí)數(shù)不是"數(shù)”,請(qǐng)見科普中國(guó)以及全部高等數(shù)學(xué)教科書。
在國(guó)外,超實(shí)數(shù)是“數(shù)”,請(qǐng)見本文附件。
注:超實(shí)數(shù)是非標(biāo)準(zhǔn)書。數(shù),因而是“數(shù)”。
袁萌陳啟清7月14日
附件:
Anumberisamathematicalobjectusedtocount,measure,andlabel.Theoriginal
examplesarethenaturalnumbers1,2,3,4,andsoforth,[1]Awrittensymbollike
"5"thatrepresentsanumberiscalledanumeral.Anumeralsystemisanorganized
waytowriteandmanipulatethistypeofsymbol,forexampletheHindu-Arabic
numeralsystemallowscombinationsofnumericaldigitslike"5"and"0"to
representlargernumberslike50,[2]Anumeralinlinguisticscanrefertoasymbol
like5,thewordsorphrasethatnamesanumber,like"fivehundred",orotherwords
thatmeanaspecificnumber,like"dozen".Inadditiontotheiruseincountingand
measuring,numeralsareoftenusedforlabels(aswithtelephonenumbers],for
ordering(aswithserialnumbers],andforcodes(aswithISBNs].Incommonusage,
numbermayrefertoasymbol,awordorphrase,orthemathematicalobject.
Inmathematics,thenotionofnumberhasbeenextendedoverthecenturiesto
include0,[3]negativenumbers,[4]rationalnumberssuchas
1
/
2
and-
2
/
3
,realnumbers[5]suchasV2andIT,andcomplexnumbers,[6]whichextendthereal
numberswithasquarerootof-1(anditscombinationswithrealnumbersby
additionandmultiplication].[4]Calculationswithnumbersaredonewith
arithmeticaloperations,themostfamiliarbeingaddition,subtraction,multiplication,
division,andexponentiation.Theirstudyorusageiscalledarithmetic.Thesame
termmayalsorefertonumbertheory,thestudyofthepropertiesofnumbers.
Besidestheirpracticaluses,numbershaveculturalsignificancethroughoutthe
world.[7][8]Forexample,inWesternsociety,thenumber13isregardedasunlucky,
and"amillion"maysignify"alot,"[7]Thoughitisnowregardedaspseudoscience,
beliefinamysticalsignificanceofnumbers,knownasnumerology,permeated
ancientandmedievalthought,[9]Numerologyheavilyinfluencedthedevelopment
ofGreekmathematics,stimulatingtheinvestigationofmanyproblemsinnumber
theorywhicharestillofinteresttoday.[9]
Duringthe19thcentury,mathematiciansbegantodevelopmanydifferent
abstractionswhichsharecertainpropertiesofnumbersandmaybeseenas
extendingtheconcept.Amongthefirstwerethehypercomplexnumbers,which
consistofvariousextensionsormodificationsofthecomplexnumbersystem.Today,
numbersystemsareconsideredimportantspecialexamplesofmuchmoregeneral
categoriessuchasringsandfields,andtheapplicationoftheterm"number"isa
matterofconvention,withoutfundamentalsignificance.[10]
Contents
1History
1.1Numerals
1.2Firstuseofnumbers
1.3Zero
1.4Negativenumbers
1.5Rationalnumbers
1.6Irrationalnumbers
1.7Transcendentalnumbersandreals
1.8Infinityandinfinitesimals
1.9Complexnumbers
1.10Primenumbers
2Mainclassification
2.1Naturalnumbers
2.2Integers
2.3Rationalnumbers
2.4Realnumbers
2.5Complexnumbers
3Subclassesoftheintegers
3.1Evenandoddnumbers
3.2Primenumbers
3.3Otherclassesofintegers
4Subclassesofthecomplexnumbers
4.1Algebraic,irrationalandtranscendentalnumbers
4.2Constructiblenumbers
4.3Computablenumbers
5Extensionsoftheconcept
5.1p-adicnumbers
5.2Hypercomplexnumbers
5.3Transfinitenumbers
5.4Nonstandardnumbers
6Seealso
7Notes
8References
9Externallinks
History
Numerals[edit]
Mainarticle:Numeralsystem
Numbersshouldbedistinguishedfromnumerals,thesymbolsusedtorepresent
numbers.TheEgyptiansinventedthefirstcipherednumeralsystem,andtheGreeks
followedbymappingtheircountingnumbersontoIonianandDoricalphabets.[11]
Romannumerals,asystemthatusedcombinationsoflettersfromtheRoman
alphabet,remaineddominantinEuropeuntilthespreadofthesuperiorHindu-
Arabicnumeralsystemaroundthelate14thcentury,andtheHindu-Arabicnumeral
systemremainsthemostcommonsystemforrepresentingnumbersintheworld
today.[12]Thekeytotheeffectivenessofthesystemwasthesymbolforzero,which
wasdevelopedbyancientIndianmathematiciansaround500AD.[12]
Firstuseofnumbers[edit]
Mainarticle:Historyofancientnumeralsystems
Bonesandotherartifactshavebeendiscoveredwithmarkscutintothemthatmany
believearetallymarks.[13]Thesetallymarksmayhavebeenusedforcounting
elapsedtime,suchasnumbersofdays,lunarcyclesorkeepingrecordsofquantities,
suchasofanimals.
Atallyingsystemhasnoconceptofplacevalue(asinmoderndecimalnotation),
whichlimitsitsrepresentationoflargenumbers.Nonethelesstallyingsystemsare
consideredthefirstkindofabstractnumeralsystem.
ThefirstknownsystemwithplacevaluewastheMesopotamianbase60system(ca.
3400BC)andtheearliestknownbase10systemdatesto3100BCinEgypt.[14]
Zero[edit]
ThefirstknowndocumenteduseofzerodatestoAD628,andappearedinthe
Brahmasphutasiddhanta,themainworkoftheIndianmathematicianBrahmagupta.
Hetreated0asanumberanddiscussedoperationsinvolvingit,includingdivision.
Bythistime(the7thcentury)theconcepthadclearlyreachedCambodiaasKhmer
numerals,anddocumentationshowstheidealaterspreadingtoChinaandthe
Islamicworld.
Thenumber605inKhmernumerals,fromaninscriptionfrom683AD.Earlyuseof
zeroasadecimalfigure.
Brahmagupta'sBrahmasphutasiddhantaisthefirstbookthatmentionszeroasa
number,henceBrahmaguptaisusuallyconsideredthefirsttoformulatetheconcept
ofzero.Hegaverulesofusingzerowithnegativeandpositivenumbers,suchas
'Zeroplusapositivenumberisapositivenumber,andanegativenumberpluszero
isthenegativenumber'.TheBrahmasphutasiddhantaistheearliestknowntextto
treatzeroasanumberinitsownright,ratherthanassimplyaplaceholderdigitin
representinganothernumberaswasdonebytheBabyloniansorasasymbolfora
lackofquantityaswasdonebyPtolemyandtheRomans.
Theuseof0asanumbershouldbedistinguishedfromitsuseasaplaceholder
numeralinplace-valuesystems.Manyancienttextsused0.Babylonianand
Egyptiantextsusedit.Egyptiansusedthewordnfrtodenotezerobalanceindouble
entryaccounting.IndiantextsusedaSanskritwordShunyeorshunyatorefertothe
conceptofvoid.Inmathematicstextsthiswordoftenreferstothenumberzero.[15]
Inasimilarvein,Panini(5thcenturyBC)usedthenull(zero)operatorinthe
Ashtadhyayi,anearlyexampleofanalgebraicgrammarfortheSanskritlanguage
(alsoseePingala].
ThereareotherusesofzerobeforeBrahmagupta,thoughthedocumentationisnot
ascompleteasitisintheBrahmasphutasiddhanta.
RecordsshowthattheAncientGreeksseemedunsureaboutthestatusof0asa
number:theyaskedthemselves"howcan'nothing'besomething?"leadingto
interestingphilosophicaland,bytheMedievalperiod,religiousargumentsaboutthe
natureandexistenceof0andthevacuum.TheparadoxesofZenoofEleadependin
partontheuncertaininterpretationof0.(TheancientGreeksevenquestioned
whether1wasanumber.]
ThelateOlmecpeopleofsouth-centralMexicobegantouseasymbolforzero,a
shellglyph,intheNewWorld,possiblybythe4thcenturyBCbutcertainlyby40BC,
whichbecameanintegralpartofMayanumeralsandtheMayacalendar.Mayan
arithmeticusedbase4andbase5writtenasbase20,Sanchezin1961reporteda
base4,base5"finger"abacus.
By130AD,Ptolemy,influencedbyHipparchusandtheBabylonians,wasusinga
symbolfor0(asmallcirclewithalongoverbar)withinasexagesimalnumeral
systemotherwiseusingalphabeticGreeknumerals.Becauseitwasusedalone,not
asjustaplaceholder,thisHellenisticzerowasthefirstdocumenteduseofatrue
zerointheOldWorld.InlaterByzantinemanuscriptsofhisSyntaxisMathematica
(Almagest),theHellenisticzerohadmorphedintotheGreekletterOmicron
(otherwisemeaning70).
AnothertruezerowasusedintablesalongsideRomannumeralsby525(first
knownusebyDionysiusExiguus),butasaword,nullameaningnothing,notasa
symbol.Whendivisionproduced0asaremainder,nihil,alsomeaningnothing,was
used.Thesemedievalzeroswereusedbyallfuturemedievalcomputists
(calculatorsofEaster),Anisolateduseoftheirinitial,N,wasusedinatableof
RomannumeralsbyBedeoracolleagueabout725,atruezerosymbol.
Negativenumbers[edit]
Furtherinformation:Historyofnegativenumbers
Theabstractconceptofnegativenumberswasrecognizedasearlyas100-50BCin
China.TheNineChaptersontheMathematicalArtcontainsmethodsforfindingthe
areasoffigures;redrodswereusedtodenotepositivecoefficients,blackfor
negative.[16]ThefirstreferenceinaWesternworkwasinthe3rdcenturyADin
Greece.Diophantusreferredtotheequationequivalentto4x+20=0(thesolution
isnegative]inArithmetica,sayingthattheequationgaveanabsurdresult.
Duringthe600s,negativenumberswereinuseinIndiatorepresentdebts.
Diophantus'previousreferencewasdiscussedmoreexplicitlybyIndian
mathematicianBrahmagupta,inBrahmasphutasiddhanta628,whousednegative
numberstoproducethegeneralformquadraticformulathatremainsinusetoday.
However,inthe12thcenturyinIndia,Bhaskaragivesnegativerootsforquadratic
equationsbutsaysthenegativevalue"isinthiscasenottobetaken,foritis
inadequate;peopledonotapproveofnegativeroots."
Europeanmathematicians,forthemostpart,resistedtheconceptofnegative
numbersuntilthe17thcentury,althoughFibonacciallowednegativesolutionsin
financialproblemswheretheycouldbeinterpretedasdebts(chapter13ofLiber
Abaci,1202)andlateraslosses(inFlos),Atthesametime,theChinesewere
indicatingnegativenumbersbydrawingadiagonalstrokethroughtheright-most
non-zerodigitofthecorrespondingpositivenumber'snumeral.[17]Thefirstuseof
negativenumbersinaEuropeanworkwasbyNicolasChuquetduringthe15th
century.Heusedthemasexponents,butreferredtothemas"absurdnumbers".
Asrecentlyasthe18thcentury,itwascommonpracticetoignoreanynegative
resultsreturnedbyequationsontheassumptionthattheyweremeaningless,justas
ReneDescartesdidwithnegativesolutionsinaCartesiancoordinatesystem.
Rationalnumbers[edit]
Itislikelythattheconceptoffractionalnumbersdatestoprehistorictimes.The
AncientEgyptiansusedtheirEgyptianfractionnotationforrationalnumbersin
mathematicaltextssuchastheRhindMathematicalPapyrusandtheKahunPapyrus.
ClassicalGreekandIndianmathematiciansmadestudiesofthetheoryofrational
numbers,aspartofthegeneralstudyofnumbertheory.Thebestknownoftheseis
Euclid'sElements,datingtoroughly300BC.OftheIndiantexts,themostrelevantis
theSthanangaSutra,whichalsocoversnumbertheoryaspartofageneralstudyof
mathematics.
Theconceptofdecimalfractionsiscloselylinkedwithdecimalplace-valuenotation;
thetwoseemtohavedevelopedintandem.Forexample,itiscommonfortheJain
mathsutratoincludecalculationsofdecimal-fractionapproximationstopiorthe
squarerootof2.Similarly,Babylonianmathtextshadalwaysusedsexagesimal
(base60)fractionswithgreatfrequency.
Irrationalnumbers[edit]
Furtherinformation:Historyofirrationalnumbers
TheearliestknownuseofirrationalnumberswasintheIndianSulbaSutras
composedbetween800and500BC.[18]Thefirstexistenceproofsofirrational
numbersisusuallyattributedtoPythagoras,morespecificallytothePythagorean
HippasusofMetapontum,whoproduceda(mostlikelygeometrical)proofofthe
irrationalityofthesquarerootof2.ThestorygoesthatHippasusdiscovered
irrationalnumberswhentryingtorepresentthesquarerootof2asafraction.
However,Pythagorasbelievedintheabsolutenessofnumbers,andcouldnotaccept
theexistenceofirrationalnumbers.Hecouldnotdisprovetheirexistencethrough
logic,buthecouldnotacceptirrationalnumbers,andso,allegedlyandfrequently
reported,hesentencedHippasustodeathbydrowning,toimpedespreadingofthis
disconcertingnews.[19]
The16thcenturybroughtfinalEuropeanacceptanceofnegativeintegraland
fractionalnumbers.Bythe17thcentury,mathematiciansgenerallyuseddecimal
fractionswithmodernnotation.Itwasnot,however,untilthe19thcenturythat
mathematiciansseparatedirrationalsintoalgebraicandtranscendentalparts,and
oncemoreundertookthescientificstudyofirrationals.Ithadremainedalmost
dormantsinceEuclid.In1872,thepublicationofthetheoriesofKarlWeierstrass
(byhispupilE.Kossak),EduardHeine(Crelle,74),GeorgCantor(Annalen,5),and
RichardDedekindwasbroughtabout.In1869,CharlesMerayhadtakenthesame
pointofdepartureasHeine,butthetheoryisgenerallyreferredtotheyear1872.
Weierstrass'smethodwascompletelysetforthbySalvatorePincherle(1880),and
Dedekind'shasreceivedadditionalprominencethroughtheauthor'slaterwork
(1888)andendorsementbyPaulTannery(1894).Weierstrass,Cantor,andHeine
basetheirtheoriesoninfiniteseries,whileDedekindfoundshisontheideaofacut
(Schnitt)inthesystemofrealnumbers,separatingallrationalnumbersintotwo
groupshavingcertaincharacteristicproperties.Thesubjecthasreceivedlater
contributionsatthehandsofWeierstrass,Kronecker(Crelle,101],andMeray.
Thesearchforrootsofquinticandhigherdegreeequationswasanimportant
development,theAbel-Ruffinitheorem(Ruffini1799,Abel1824]showedthatthey
couldnotbesolvedbyradicals(formulasinvolvingonlyarithmeticaloperationsand
roots].Henceitwasnecessarytoconsiderthewidersetofalgebraicnumbers(all
solutionstopolynomialequations).Galois(1832)linkedpolynomialequationsto
grouptheorygivingrisetothefieldofGaloistheory.
Continuedfractions,closelyrelatedtoirrationalnumbers(andduetoCataldi,1613),
receivedattentionatthehandsofEuler,andattheopeningofthe19thcenturywere
broughtintoprominencethroughthewritingsofJosephLouisLagrange.Other
noteworthycontributionshavebeenmadebyDruckenmiiller(1837),Kunze(1857),
Lemke(1870),andGunther(1872).Ramus(1855)firstconnectedthesubjectwith
determinants,resulting,withthesubsequentcontributionsofHeine,Mobius,and
Gunther,inthetheoryofKettenbruchdeterminanten.
Transcendentalnumbersandreals[edit]
Furtherinformation:HistoryofIT
Theexistenceoftranscendentalnumbers[20]wasfirstestablishedbyLiouville
(1844,1851).Hermiteprovedin1873thateistranscendentalandLindemann
provedin1882thatnistranscendental.Finally,Cantorshowedthatthesetofall
realnumbersisuncountablyinfinitebutthesetofallalgebraicnumbersis
countablyinfinite,sothereisanuncountablyinfinitenumberoftranscendental
numbers.
Infinityandinfinitesimals[edit]
Furtherinformation:Historyofinfinity
TheearliestknownconceptionofmathematicalinfinityappearsintheYajurVeda,
anancientIndianscript,whichatonepointstates,"Ifyouremoveapartfrom
infinityoraddaparttoinfinity,stillwhatremainsisinfinity."Infinitywasapopular
topicofphilosophicalstudyamongtheJainmathematiciansc.400BC.They
distinguishedbetweenfivetypesofinfinity:infiniteinoneandtwodirections,
infiniteinarea,infiniteeverywhere,andinfiniteperpetually.
AristotledefinedthetraditionalWesternnotionofmathematicalinfinity.He
distinguishedbetweenactualinfinityandpotentialinfinity—thegeneralconsensus
beingthatonlythelatterhadtruevalue.GalileoGalilei'sTwoNewSciences
discussedtheideaofone-to-onecorrespondencesbetweeninfinitesets.Butthe
nextmajoradvanceinthetheorywasmadebyGeorgCantor;in1895hepublisheda
bookabouthisnewsettheory,introducing,amongotherthings,transfinitenumbers
andformulatingthecontinuumhypothesis.
Inthe1960s,AbrahamRobinsonshowedhowinfinitelylargeandinfinitesimal
numberscanberigorouslydefinedandusedtodevelopthefieldofnonstandard
analysis.Thesystemofhyperrealnumbersrepresentsarigorousmethodoftreating
theideasaboutinfiniteandinfinitesimalnumbersthathadbeenusedcasuallyby
mathematicians,scientists,andengineerseversincetheinventionofinfinitesimal
calculusbyNewtonandLeibniz.
Amoderngeometricalversionofinfinityisgivenbyprojectivegeometry,which
introduces"idealpointsatinfinity",oneforeachspatialdirection.Eachfamilyof
parallellinesinagivendirectionispostulatedtoconvergetothecorresponding
idealpoint.Thisiscloselyrelatedtotheideaofvanishingpointsinperspective
drawing.
Complexnumbers[edit]
Furtherinformation:Historyofcomplexnumbers
Theearliestfleetingreferencetosquarerootsofnegativenumbersoccurredinthe
workofthemathematicianandinventorHeronofAlexandriainthe1stcenturyAD,
whenheconsideredthevolumeofanimpossiblefrustumofapyramid.They
becamemoreprominentwheninthe16thcenturyclosedformulasfortherootsof
thirdandfourthdegreepolynomialswerediscoveredbyItalianmathematicians
suchasNiccoldFontanaTartagliaandGerolamoCardano.Itwassoonrealizedthat
theseformulas,evenifonewasonlyinterestedinrealsolutions,sometimes
requiredthemanipulationofsquarerootsofnegativenumbers.
Thiswasdoublyunsettlingsincetheydidnotevenconsidernegativenumberstobe
onfirmgroundatthetime.WhenReneDescartescoinedtheterm"imaginary"for
thesequantitiesin1637,heintendeditasderogatory.(Seeimaginarynumberfora
discussionofthe"reality"ofcomplexnumbers.]Afurthersourceofconfusionwas
thattheequation
[-1]2=-1-1=-1{\displaystyle\left({\sqrt{-l}}\right]A{2}={\sqrt{-l}}{\sqrt
{-1}}=-!}
seemedcapriciouslyinconsistentwiththealgebraicidentity
ab=ab,{\displaystyle{\sqrt{a}}{\sqrt}={\sqrt{ab}},}
whichisvalidforpositiverealnumbersaandb,andwasalsousedincomplex
numbercalculationswithoneofa,bpositiveandtheothernegative.Theincorrect
useofthisidentity,andtherelatedidentity
1a=1a{\displaystyle{\frac{l}{\sqrt{a}}}={\sqrt{\frac{l}{a}}}}
inthecasewhenbothaandbarenegativeevenbedeviledEuler.Thisdifficulty
eventuallyledhimtotheconventionofusingthespecialsymboliinplaceof
-1{\displaystyle{\sqrt{-1}}}
toguardagainstthismistake.
The18thcenturysawtheworkofAbrahamdeMoivreandLeonhardEuler.De
Moivre'sformula(1730)states:
(cos?0+isin?0)n=cos@n0+isin回n0{\displaystyle(\cos\theta+i\sin
\theta)A{n}=\cosn\theta+i\sinn\theta}
whileEuler'sformulaofcomplexanalysis(1748)gaveus:
cos?0+isin?0=ei0.{\displaystyle\cos\theta+i\sin\theta=eA{i\theta}.}
TheexistenceofcomplexnumberswasnotcompletelyaccepteduntilCasparWessel
describedthegeometricalinterpretationin1799.CarlFriedrichGaussrediscovered
andpopularizeditseveralyearslater,andasaresultthetheoryofcomplex
numbersreceivedanotableexpansion.Theideaofthegraphicrepresentationof
complexnumbershadappeared,however,asearlyas1685,inWallis'sDeAlgebra
tractatus.
Alsoin1799,Gaussprovidedthefirstgenerallyacceptedproofofthefundamental
theoremofalgebra,showingthateverypolynomialoverthecomplexnumbershasa
fullsetofsolutionsinthatrealm.Thegeneralacceptanceofthetheoryofcomplex
numbersisduetothelaborsofAugustinLouisCauchyandNielsHenrikAbel,and
especiallythelatter,whowasthefirsttoboldlyusecomplexnumberswithasuccess
thatiswellknown.
Gaussstudiedcomplexnumbersoftheforma+bi,whereaandbareintegral,or
rational(andiisoneofthetworootsofx2+1=0).Hisstudent,GottholdEisenstein,
studiedthetypea+whereisacomplexrootofx3-1=0.Othersuchclasses
(calledcyclotomicfields)ofcomplexnumbersderivefromtherootsofunityxk-1=
0forhighervaluesofk.ThisgeneralizationislargelyduetoErnstKummer,who
alsoinventedidealnumbers,whichwereexpressedasgeometricalentitiesbyFelix
Kleinin1893.
In1850VictorAlexandrePuiseuxtookthekeystepofdistinguishingbetweenpoles
andbranchpoints,andintroducedtheconceptofessentialsingularpoints.This
eventuallyledtotheconceptoftheextendedcomplexplane.
Primenumbers[edit]
Primenumbershavebeenstudiedthroughoutrecordedhistory.Eucliddevotedone
bookoftheElementstothetheoryofprimes;initheprovedtheinfinitudeofthe
primesandthefundamentaltheoremofarithmetic,andpresentedtheEuclidean
algorithmforfindingthegreatestcommondivisoroftwonumbers.
In240BC,EratosthenesusedtheSieveofEratosthenestoquicklyisolateprime
numbers.ButmostfurtherdevelopmentofthetheoryofprimesinEuropedatesto
theRenaissanceandlatereras.
In1796,Adrien-MarieLegendreconjecturedtheprimenumbertheorem,describing
theasymptoticdistributionofprimes.Otherresultsconcerningthedistributionof
theprimesincludeEuler'sproofthatthesumofthereciprocalsoftheprimes
diverges,andtheGoldbachconjecture,whichclaimsthatanysufficientlylargeeven
numberisthesumoftwoprimes.Yetanotherconjecturerelatedtothedistribution
ofprimenumbersistheRiemannhypothesis,formulatedbyBernhardRiemannin
1859.TheprimenumbertheoremwasfinallyprovedbyJacquesHadamardand
CharlesdelaVallee-Poussinin1896.GoldbachandRiemann'sconjecturesremain
unprovenandunrefuted.
Mainclassification[edit]
"Numbersystem"redirectshere.Forsystemsforexpressingnumbers,seeNumeral
system.
Seealso:Listoftypesofnumbers
Numberscanbeclassifiedintosets,callednumbersystems,suchasthenatural
numbersandtherealnumbers,[21]Themajorcategoriesofnumbersareasfollows:
Mainnumbersystems
N{\displaystyle\mathbb{N}}
Natural
0,1,2,3,4,5,...or1,2,3,4,5,...
N0{\displaystyle\mathbb{N}_{0}}
or
N1{\displaystyle\mathbb{N}_{1}}
aresometimesused.
Z{\displaystyle\mathbb{Z}}
Integer
—5,—4,—3,—2,—1,0,1,2,3,4,5,...
Q{\displaystyle\mathbb{Q}}
Rational
a
/
b
whereaandbareintegersandbisnot0
R{\displaystyle\mathbb{R}}
Real
Thelimitofaconvergentsequenceofrationalnumbers
C{\displaystyle\mathbb{C}}
Complex
a+biwhereaandbarerealnumbersandiisaformalsquarerootof-1
Thereisgenerallynoprobleminidentifyingeachnumbersystemwithaproper
subsetofthenextone(byabuseofnotation),becauseeachofthesenumbersystems
iscanonicallyisomorphictoapropersubsetofthenextone,[citationneeded]The
resultinghierarchyallows,forexample,totalk,formallycorrectly,aboutreal
numbersthatarerationalnumbers,andisexpressedsymbolicallybywriting
NuZuQuRuC{\displaystyle\mathbb{N}\subset\mathbb{Z}\subset
\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}}
Naturalnumbers[edit]
Mainarticle:Naturalnumber
Thenaturalnumbers,startingwith1
Themostfamiliarnumbersarethenaturalnumbers(sometimescalledwhole
numbersorcountingnumbers):1,2,3,andsoon.Traditionally,thesequenceof
naturalnumbersstartedwith1(0wasnotevenconsideredanumberforthe
AncientGreeks.]However,inthe19thcentury,settheoristsandother
mathematiciansstartedincluding0(cardinalityoftheemptyset,i.e,0elements,
where0isthusthesmallestcardinalnumber]inthesetofnaturalnumbers.[22][23]
Today,differentmathematiciansusethetermtodescribebothsets,including0or
not.ThemathematicalsymbolforthesetofallnaturalnumbersisN,alsowritten
N{\displaystyle\mathbb{N}}
,andsometimes
N0{\displaystyle\mathbb{N}_{0}}
or
N1{\displaystyle\mathbb{N}_{1}}
whenitisnecessarytoindicatewhetherthesetshouldstartwith0or1,
respectively.
Inthebase10numeralsystem,inalmostuniversalusetodayformathematical
operations,thesymbolsfornaturalnumbersarewrittenusingtendigits:0,1,2,3,4,
5,6,7,8,and9.Theradixorbaseisthenumberofuniquenumericaldigits,
includingzero,thatanumeralsystemusestorepresentnumbers(forthedecimal
system,theradixis10).Inthisbase10system,therightmostdigitofanatural
numberhasaplacevalueof1,andeveryotherdigithasaplacevaluetentimesthat
oftheplacevalueofthedigittoitsright.
Insettheory,whichiscapableofactingasanaxiomaticfoundationformodern
mathematics,[24]naturalnumberscanberepresentedbyclassesofequivalentsets.
Forinstance,thenumber3canberepresentedastheclassofallsetsthathave
exactlythreeelements.Alternatively,inPeanoArithmetic,thenumber3is
representedassssO,wheresisthe"successor"function(i.e.,3isthethirdsuccessor
of0).Manydifferentrepresentationsarepossible;allthatisneededtoformally
represent3istoinscribeacertainsymbolorpatternofsymbolsthreetimes.
Integers[edit]
Mainarticle:Integer
Thenegativeofapositiveintegerisdefinedasanumberthatproduces0whenitis
addedtothecorrespondingpositiveinteger.Negativenumbersareusuallywritten
withanegativesign(aminussign),Asanexample,thenegativeof7iswritten-7,
and7+(-7)=0.Whenthesetofnegativenumbersiscombinedwiththesetof
naturalnumbers(including0),theresultisdefinedasthesetofintegers,Zalso
written
Z{\displaystyle\mathbb{Z}}
.HeretheletterZcomesfromGermanZahtmeaning'number'.Thesetofintegers
formsaringwiththeoperationsadditionandmultiplication.[25]
Thenaturalnumbersformasubsetoftheintegers.Asthereisnocommonstandard
fortheinclusionornotofzerointhenaturalnumbers,thenaturalnumberswithout
zeroarecommonlyreferredtoaspositiveintegers,andthenaturalnumberswith
zeroarereferredtoasnon-negativeintegers.
Rationalnumbers[edit]
Mainarticle:Rationalnumber
Arationalnumberisanumberthatcanbeexpressedasafractionwithaninteger
numeratorandapositiveintegerdenominator.Negativedenominatorsareallowed,
butarecommonlyavoided,aseveryrationalnumberisequaltoafractionwith
positivedenominator.Fractionsarewrittenastwointegers,thenumeratorandthe
denominator,withadividingbarbetweenthem.Thefraction
m
/
n
representsmpartsofawholedividedintonequalparts.Twodifferentfractions
maycorrespondtothesamerationalnumber;forexamp
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度合同錄入員招聘支持企業(yè)數(shù)字化轉(zhuǎn)型
- 2025年度事業(yè)單位聘用合同崗位職責(zé)創(chuàng)新與職業(yè)能力提升培訓(xùn)
- 2025年度電梯維修保養(yǎng)、安裝與安全評(píng)估合同
- 中國(guó)綠茶類項(xiàng)目投資可行性研究報(bào)告
- 2025年量具盒項(xiàng)目投資可行性研究分析報(bào)告
- 二零二五年度消防器材生產(chǎn)與綠色制造技術(shù)合作合同
- 2025年度企業(yè)搬遷項(xiàng)目拆遷補(bǔ)償協(xié)議具體細(xì)則
- 中水處理安裝合同范本
- 2025年停薪留職員工權(quán)益保護(hù)與職業(yè)規(guī)劃合作協(xié)議
- 2025年度礦山股權(quán)轉(zhuǎn)讓協(xié)議書:礦山綠色礦業(yè)技術(shù)研發(fā)與礦山股權(quán)轉(zhuǎn)讓合同
- 化工原理傳質(zhì)導(dǎo)論
- 環(huán)境與可持續(xù)發(fā)展ppt課件(完整版)
- Linux操作系統(tǒng)課件(完整版)
- 跨境電商亞馬遜運(yùn)營(yíng)實(shí)務(wù)完整版ppt課件-整套課件-最全教學(xué)教程
- 中國(guó)傳媒大學(xué)《當(dāng)代電視播音主持教程》課件
- 浙美版小學(xué)六年級(jí)美術(shù)下冊(cè)全冊(cè)精品必備教學(xué)課件
- DB32∕T 4245-2022 城鎮(zhèn)供水廠生物活性炭失效判別和更換標(biāo)準(zhǔn)
- 建設(shè)工程圍擋標(biāo)準(zhǔn)化管理圖集(2022年版)
- 人教版七年級(jí)上冊(cè)歷史課程綱要
- 濕法冶金簡(jiǎn)介
- 2022新教科版六年級(jí)科學(xué)下冊(cè)全一冊(cè)全部教案(共28節(jié))
評(píng)論
0/150
提交評(píng)論