找規(guī)律教學設(shè)計_第1頁
找規(guī)律教學設(shè)計_第2頁
找規(guī)律教學設(shè)計_第3頁
找規(guī)律教學設(shè)計_第4頁
找規(guī)律教學設(shè)計_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

找規(guī)律教學設(shè)計優(yōu)秀作為一位優(yōu)秀的人民教師,可能需要進行教學設(shè)計編寫工作,教學設(shè)計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。那么教學設(shè)計應(yīng)該怎么寫才合適呢?以下是小編為大家整理的找規(guī)律教學設(shè)計優(yōu)秀,希望對大家有所幫助。找規(guī)律教學設(shè)計優(yōu)秀1教學目標:1.知識目標:通過物品的有序排列,使學生通過觀察、操作等活動發(fā)現(xiàn)圖形的循環(huán)排列規(guī)律。2.能力目標:培養(yǎng)學生的觀察、操作及推理能力。3.情感目標:培養(yǎng)學生發(fā)現(xiàn)和欣賞數(shù)學美的意識,知道事物排列的規(guī)律中隱含著數(shù)學知識。教學重點:找出圖形的循環(huán)排列規(guī)律。教學難點:找循環(huán)排列規(guī)律的方法。教具:多媒體課件,紅、黃、藍、綠卡片各四張,圓形、三角形、正方形、五角星圖片教學流程:一、情境導入,引出規(guī)律1.最近,程老師家正在裝修,你們愿不愿意到我家去參觀一下呢?2.(出示課件)你們發(fā)現(xiàn)了什么?同學們真棒,能一下子看出來路燈與樹的排列規(guī)律。不錯,這就是我們以前學過的簡單的循環(huán)規(guī)律,今天,我們要去了解更為復(fù)雜的循環(huán)規(guī)律。(師板課題:找規(guī)律)二、自主探究,發(fā)現(xiàn)規(guī)律(一)開啟密碼鎖。(教材中墻面主題圖變化而來)1.我的家到了??墒?,我們家有一個密碼鎖,需要大家打開才能進去。你們愿意試一試嗎?每行都有哪些圖形?每行圖形的排列順序是什么?仔細觀察你發(fā)現(xiàn)了什么?(1)學生分組討論。(2)學生匯報。師:哪個小組把自己發(fā)現(xiàn)的規(guī)律和大家說一說。預(yù)設(shè):生1:我是斜著看的,斜著看每一斜行的圖形都相同;生2::橫著看,上一行的第一個圖形移到最后,其他圖形都向前移了一格;生3::豎著看,前面一排的第一個圖形移到了最下面,就變成了后面一排的圖案。(課件演示)2.師小結(jié):同學們真棒!一幅圖,從不同的.角度觀察,找到了不同的規(guī)律,你們都是善于發(fā)現(xiàn)的孩子。看來,老師家的密碼鎖也該換了?。ǘ╀佋O(shè)地面。1.同學們,這就是老師家的廚房了,我已經(jīng)買好了五種顏色的地磚,但還沒鋪,我想鋪成這樣的圖案。(示課件)你們覺得這樣好看嗎?為什么?預(yù)設(shè):生1:好看,因為五顏六色的。師:你是說因為擺得很亂才漂亮嗎?這些地磚排列得沒有什么規(guī)律嗎?你們發(fā)現(xiàn)什么規(guī)律了?生2:很有規(guī)律師:你們發(fā)現(xiàn)什么規(guī)律了?2.誰愿意把你的發(fā)現(xiàn)說一說?(課件出示)3.如果我接著往下鋪的話,會是什么樣的?你又有什么發(fā)現(xiàn)?(和第一行一樣)是不是這樣?(師演示課件)師小結(jié):很感謝你們幫我把地面鋪得又有規(guī)律又漂亮。為了感謝你們,我特地準備了水果。你們看!三、反復(fù)實踐,鞏固規(guī)律(水果盤里的規(guī)律)1.有什么想說的嗎?(生說發(fā)現(xiàn)的規(guī)律)你們能把剛學到的知識馬上運用到這,非常好,你們看,我們不但要學知識,更重要的是用知識。2.那你們知道水果盤里的水果應(yīng)該怎樣擺放嗎?(生說,師演示課件)3.現(xiàn)在水果是排成一排的,你們看,現(xiàn)在它們發(fā)生了變化。(師演示課件)。現(xiàn)在你們還能發(fā)現(xiàn)它們的規(guī)律嗎?快速和同桌商量一下。誰知道這里應(yīng)該怎樣擺放水果?(生答,師演示)4.除了水果,老師還給大家準備了一張卡片。但這張卡片上面沒有顏色。沒有顏色的卡片多不漂亮呀,那就請你按規(guī)律涂上美麗的顏色吧。5.排隊游戲:其實這些規(guī)律就在我們同學的身邊。不信,老師就請四位同學到前面來做排隊游戲。(給四位同學戴上四種動物頭飾。)現(xiàn)在又回到了原來的排列順序了,接下來又應(yīng)該是多少了呢?你們發(fā)現(xiàn)了什么?師小結(jié):四種圖形或數(shù)字進行的循環(huán)排列現(xiàn)象,從第五行開始重復(fù)出現(xiàn),每四行就會出現(xiàn)一個大循環(huán)。而且這種排列可以無休止地排列下去。(板書省略號。)這就是典型的循環(huán)排列現(xiàn)象。四、觀察生活,體味規(guī)律其實除了老師的家以外,生活中還有許多有趣的循環(huán)排列現(xiàn)象。1.你們知道哪些呢?(生匯報收集)2.(師演示課件)是的,四季的交替,精美的服飾等等中都包含著循環(huán)排列規(guī)律。五、動手實踐,創(chuàng)造規(guī)律1.學過的知識只能應(yīng)用到了生活中才有意義。就請同學們用本節(jié)所學的循環(huán)排列知識,將手中的小粘貼手帕上帖出美麗的圖案,送給辛勤養(yǎng)育我們的父母吧!2.生自由創(chuàng)造,展示,評價。找規(guī)律教學設(shè)計優(yōu)秀2一、特性解析:從雙基到四基“找規(guī)律”是蘇教版教材的一個亮點。“找規(guī)律”內(nèi)容的教學編排,體現(xiàn)了以下三方面的特性。1.普遍存在性。所謂規(guī)律就是一切事物現(xiàn)象之間固有的本質(zhì)的必然的聯(lián)系。晝夜交替四季輪回,潮汐漲落周而復(fù)始。產(chǎn)生這些永恒不變的原因便是自然規(guī)律。而在數(shù)學世界中,各種數(shù)學元素之間也存在著相互的聯(lián)系。2.可認知性。隨著那些永恒不變的物質(zhì)或現(xiàn)象時刻反映到人們的頭腦里來的時候,人們對規(guī)律便由開始的感性認識發(fā)展到理性認識。找規(guī)律是人類認識和把握客觀世界的重要手段。3.可探索性。數(shù)學教學正從加強“雙基”逐步變成重視“四基”。學生學習應(yīng)當是一個生動活潑的、主動的和富有個性的過程。認真聽講、獨立思考、動手實踐、自主探索、合作交流等,都是學習數(shù)學的重要方式。學生應(yīng)當有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、計算、推理、驗證等活動過程。而“找規(guī)律”的教學,以發(fā)現(xiàn)學習為主要方式,以觀察、操作、畫圖、實驗、猜測、驗證等為主要學習活動,重視學生的經(jīng)歷、體驗、發(fā)現(xiàn)、概括、歸納的過程。二、策略構(gòu)建:從現(xiàn)象到本質(zhì)數(shù)學模型是針對某種事物系統(tǒng)的特征或數(shù)量依存關(guān)系,采用數(shù)學語言,概括地表述出的一種數(shù)學結(jié)構(gòu)。而規(guī)律反映的是在動態(tài)變化過程中變量與變量之間始終存在一種普遍、穩(wěn)固、必然的聯(lián)系,這種函數(shù)關(guān)系就是數(shù)學模型。事物的規(guī)律是客觀存在的,又往往是隱含并可以發(fā)現(xiàn)的。只有對十分豐富的現(xiàn)象進行深入的分析,從感性認識上升到理性認識,才能認識規(guī)律。學生探索規(guī)律能力的提高不是簡單地體現(xiàn)在知道規(guī)律“是什么”,還需要解決“為什么”和“怎么樣”的問題。找規(guī)律教學的價值取向,不應(yīng)僅僅定位于形成結(jié)構(gòu)、應(yīng)用模型,而應(yīng)更為重視建立模型過程中所獲得的數(shù)學思想方法、所累積的數(shù)學學習經(jīng)驗。三、案例解讀:從認識到領(lǐng)悟下面以蘇教版五年級下冊“探索圖形覆蓋中的規(guī)律”為例談一談?wù)乙?guī)律教學策略的構(gòu)建。1.體會聯(lián)系:直面問題的數(shù)學特征在“找規(guī)律”教學中,問題情境是基礎(chǔ),自主探究是重點,思維提升是歸宿。問題情境是“找規(guī)律”教學的基礎(chǔ),數(shù)學教學要緊密聯(lián)系學生的生活環(huán)境,從學生的經(jīng)驗和已有知識出發(fā),創(chuàng)設(shè)有助于學生自主學習、合作交流的情境,使學生通過觀察、操作、類比、猜測、交流、反思等活動,獲得基本的數(shù)學知識和技能,進一步發(fā)展思維能力,激發(fā)學生的學習興趣,增強學生學好數(shù)學的信心。因此,在編排找規(guī)律教材時,每個單元都安排兩個例題。例1著重認識規(guī)律,例2著重應(yīng)用規(guī)律。例1在典型情境中探索規(guī)律,例2在變化情境里探索規(guī)律。對教材深入解讀之后,就可以借助教材的情景引導學生進行數(shù)學化的觀察,當然也可以根據(jù)教材例題進行適度加工、改造形成更貼合于學生生活實際的情境,引導學生進入觀察狀態(tài)?!疤剿鲌D形覆蓋中的規(guī)律”一課中教材提供的情境是1-10這十個數(shù)組成的數(shù)條,每次框出兩個數(shù),一共能框出多少個不同的和?;趯滩睦}的教學目標的理解:即學生在“求和”時,感受到“和”的個數(shù)就是紅框的“位置”個數(shù);學生體會依次“求和”時,紅框在依次平移。于是利用“圖形平移”解決問題;學生研究“圖形平移”中的數(shù)量關(guān)系,得出求“覆蓋位置個數(shù)”的數(shù)學方法。在教學設(shè)計中可以進行目標指向一致但情境相異的設(shè)計,如:10月1日到7日中進行兩日游,有多少種不同的方法?或者62天的暑假中兩日游有多少種不同的方法?也可選擇學生喜聞樂見的羊羊運動會入場券進行情境設(shè)計,從100張連號入場券中拿兩張連號的券,一共有多少種不同的拿法?從100張中選擇兩張連號的券,因為數(shù)據(jù)比較大、規(guī)律不明顯,大部分學生都很難找到券的總數(shù)與每次拿的張數(shù)之間的聯(lián)系。因為學生已經(jīng)具有“面對復(fù)雜問題,從簡單想起的策略”,因此很容易地想到能不能先考慮總數(shù)是10張,從10張券中拿兩張,有多少種不同的拿法?并在此基礎(chǔ)上進一步探尋規(guī)律。而在探尋這10張券中拿2張連號的券的不同拿法的過程中,學生通過寫一寫、連一連、圈一圈、框一框等不同的方式,體會到券的總張數(shù)與每次框的個數(shù)之間是存在聯(lián)系的。教師通過“每次框幾個數(shù)?一共平移了幾次?一共有10個數(shù),為什么只要平移8次?一共有多少種不同的拿法?平移8次,為什么一共的拿法有9種?”的追問形式,引導學生初步體會現(xiàn)象背后的必然本質(zhì)聯(lián)系。2.體驗過程:直擊現(xiàn)象的數(shù)學本質(zhì)“找規(guī)律”的教學難點在于如何讓學生從直觀的解決問題去感悟其中抽象的數(shù)學思想方法。解決這個難點的關(guān)鍵就是讓學生主動參與,因為如果沒有主動參與就不可能對數(shù)學知識、數(shù)學思想方法產(chǎn)生體驗;沒有了體驗,那數(shù)學思想方法的滲透只能是一句空話。因此教師應(yīng)該讓學生參與教學實踐活動,充分發(fā)揮他們的主體作用。在動腦、動手、動口的過程中領(lǐng)悟體驗數(shù)學思想方法的形成,揭示其中隱含的數(shù)學思想方法,并逐步掌握運用。在這一環(huán)節(jié),變中感悟不變是學生操作的重要目標。在教學時,需要教師引導學生把操作與思考結(jié)合起來,使學生領(lǐng)悟數(shù)學的方法和策略。券的總張數(shù)是一個變量,每次框的個數(shù)是另一個變量,這兩個變量之間究竟存在著怎樣的關(guān)系?在每一位學生都有了數(shù)次的操作經(jīng)驗后,交流分層次展開。第一層次是兩組上臺平移操作并匯報數(shù)據(jù)。第二層次是兩組上臺說總數(shù)、平移次數(shù),其他學生利用操作的經(jīng)驗,大膽猜想,運用直覺思維作出判斷??梢栽俅谓柚揭频?操作驗證猜想,培養(yǎng)了學生合情猜想的能力。學生在操作中積累感性經(jīng)驗,在交流中感知有序思考以及用平移的方法解決問題的優(yōu)越,學生形成了豐富的動作思維,并在猜測與驗證的活動中豐富了數(shù)學學習的情感體驗。3.體悟關(guān)系:直達抽象的數(shù)學模型表象的建立有助于更快地擺脫具體事物的束縛,向抽象思維過渡。因此,教者可以設(shè)疑:如果總數(shù)是18張,每次框出6張,一共有多少種不同的拿法?不操作,能保證猜對嗎?并采訪學生,你是怎樣想的?在這里,對于不同層次的學生,雖然都能猜中,但思維的水平層次是有高低的。通過交流,一方面可以豐富學生解決問題的策略,另一方面,也可以推進策略的優(yōu)化。有的學生是僅通過觀察數(shù)據(jù),從數(shù)據(jù)的變化中尋求出不變的關(guān)系的;有的學生是在頭腦里多次移動方框,在平移中發(fā)現(xiàn)“平移的次數(shù)=總數(shù)-每次框的個數(shù)”;而有的同學是在頭腦中僅僅放置一次方框,就能理性思考,方框外面有幾個數(shù)就要平移幾次,操作活動真正內(nèi)化,并建立起清晰鮮明的表象。這樣的交流,揭示了數(shù)學直覺背后所隱藏的本質(zhì)聯(lián)系。為學生從動作思維上升到表象思維,進而提升到抽象思維提供了很好的支撐。而抽象化的“如果在a張券中拿b張連號的券,一共有多少種不同的拿法?”就為學生擺脫形象的拐杖、擺脫表象的依托,提供了必要的可能性。從而水到渠成地揭示發(fā)現(xiàn)的規(guī)律:“總數(shù)-每次框的個數(shù)+1=一共的拿法?!边@樣的一種函數(shù)關(guān)系,在變量與變量之間建構(gòu)出了一種穩(wěn)定的不變的聯(lián)系,就是一種數(shù)學模型。在建立模型的過程中,學生經(jīng)歷了小步實驗,經(jīng)歷了變量列舉,經(jīng)歷了觀察比較,經(jīng)歷了猜想驗證,同時也經(jīng)歷了感性發(fā)現(xiàn)與理性思考。不僅找到了規(guī)律,而且知道了規(guī)律存在的原因、規(guī)律存在的必然性。建好模型,還需靈活應(yīng)用模型。學生在具體情境中理解了算理,但學生思維不能僅僅停留模型的結(jié)構(gòu)上,要讓學生親身經(jīng)歷將不同的實際問題抽象成數(shù)學模型,并運用模型解決問題的過程。用數(shù)學模型的眼光來觀察,用數(shù)學模型的語言來解釋,用數(shù)學模型的關(guān)系來推理。在這一環(huán)節(jié),教者可以設(shè)計多樣的問題情境來幫助學生深入理解模型,靈活運用模型。如設(shè)計綜合性較強的實際問題:喜羊羊和美羊羊到電影院觀看運動會專題片,電影院一排有8個座位,要讓喜羊羊和美羊羊兩個坐在一起,在同一排有多少種不同的坐法?同時出示對比題:改換條件“讓喜羊羊坐在美羊羊左邊”,有什么不同?從一字模型到封閉模型也可以幫助學生獲得思維的跨越式發(fā)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論