浙江教育綠色評(píng)價(jià)聯(lián)盟2024屆高考仿真模擬數(shù)學(xué)試卷含解析_第1頁(yè)
浙江教育綠色評(píng)價(jià)聯(lián)盟2024屆高考仿真模擬數(shù)學(xué)試卷含解析_第2頁(yè)
浙江教育綠色評(píng)價(jià)聯(lián)盟2024屆高考仿真模擬數(shù)學(xué)試卷含解析_第3頁(yè)
浙江教育綠色評(píng)價(jià)聯(lián)盟2024屆高考仿真模擬數(shù)學(xué)試卷含解析_第4頁(yè)
浙江教育綠色評(píng)價(jià)聯(lián)盟2024屆高考仿真模擬數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江教育綠色評(píng)價(jià)聯(lián)盟2024屆高考仿真模擬數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.2.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長(zhǎng)度而得到,則函數(shù)的解析式為()A. B.C. D.3.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.124.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.5.已知雙曲線的右焦點(diǎn)為F,過(guò)右頂點(diǎn)A且與x軸垂直的直線交雙曲線的一條漸近線于M點(diǎn),MF的中點(diǎn)恰好在雙曲線C上,則C的離心率為()A. B. C. D.6.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.7.設(shè)函數(shù),若在上有且僅有5個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.8.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則9.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個(gè)正數(shù)滿足,的取值范圍是()A. B. C. D.10.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.11.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.5412.若的展開(kāi)式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知矩形ABCD,AB=4,BC=3,以A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的雙曲線的離心率為_(kāi)___________.14.已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,,則______.15.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為_(kāi)__________.16.在中,點(diǎn)在邊上,且,設(shè),,則________(用,表示)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.18.(12分)已知各項(xiàng)均不相等的等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.20.(12分)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.21.(12分)已知函數(shù)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn).(1)求實(shí)數(shù)a的取值范圍;(2)若函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為和,且,求實(shí)數(shù)a的取值范圍.(e是自然對(duì)數(shù)的底數(shù))22.(10分)在△ABC中,角所對(duì)的邊分別為向量,向量,且.(1)求角的大?。唬?)求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【點(diǎn)睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.2、A【解析】

由圖根據(jù)三角函數(shù)圖像的對(duì)稱性可得,利用周期公式可得,再根據(jù)圖像過(guò),即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長(zhǎng)度而得到,所以.故選:A【點(diǎn)睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.3、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來(lái),繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.4、C【解析】

由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)椋?,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.5、A【解析】

設(shè),則MF的中點(diǎn)坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,M所在直線為,不妨設(shè),∴MF的中點(diǎn)坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【點(diǎn)睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意構(gòu)造的齊次方程.6、B【解析】

依據(jù)線性約束條件畫出可行域,目標(biāo)函數(shù)恒過(guò),再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對(duì)應(yīng)的平面區(qū)域,如圖所示:其中,直線過(guò)定點(diǎn),當(dāng)時(shí),不等式表示直線及其左邊的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當(dāng)時(shí),直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,只需直線的斜率,解得.綜上可得實(shí)數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問(wèn)題,分類討論與數(shù)形結(jié)合思想,屬于中檔題7、A【解析】

由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),,∵在上有且僅有5個(gè)零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】試題分析:,,故選D.考點(diǎn):點(diǎn)線面的位置關(guān)系.9、C【解析】

先從函數(shù)單調(diào)性判斷的取值范圍,再通過(guò)題中所給的是正數(shù)這一條件和常用不等式方法來(lái)確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識(shí),屬于中檔題.10、B【解析】

首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.11、C【解析】

由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.12、C【解析】展開(kāi)式的通項(xiàng)為,因?yàn)檎归_(kāi)式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

根據(jù)為焦點(diǎn),得;又求得,從而得到離心率.【詳解】為焦點(diǎn)在雙曲線上,則又本題正確結(jié)果:【點(diǎn)睛】本題考查利用雙曲線的定義求解雙曲線的離心率問(wèn)題,屬于基礎(chǔ)題.14、63【解析】

對(duì)進(jìn)行化簡(jiǎn),可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63【點(diǎn)睛】本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時(shí),常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)15、【解析】

取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時(shí),弦的長(zhǎng)才最大.【詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.16、【解析】

結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因?yàn)椋?,又因?yàn)椋裕蚀鸢笧椋骸军c(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過(guò)幾何條件向基底轉(zhuǎn)化.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】

(1),①當(dāng)時(shí),,②兩式相減即得數(shù)列的通項(xiàng)公式;(2)先求出,再利用裂項(xiàng)相消法求和證明.【詳解】(1)解:,①當(dāng)時(shí),.當(dāng)時(shí),,②由①-②,得,因?yàn)榉仙鲜?,所以.?)證明:因?yàn)?,所以.【點(diǎn)睛】本題主要考查數(shù)列通項(xiàng)的求法,考查數(shù)列求和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1);(2).【解析】試題分析:(1)設(shè)公差為,列出關(guān)于的方程組,求解的值,即可得到數(shù)列的通項(xiàng)公式;(2)由(1)可得,即可利用裂項(xiàng)相消求解數(shù)列的和.試題解析:(1)設(shè)公差為.由已知得,解得或(舍去),所以,故.(2),考點(diǎn):等差數(shù)列的通項(xiàng)公式;數(shù)列的求和.19、(1);(2)【解析】

(1)根據(jù)正弦定理化簡(jiǎn)得到,故,得到答案.(2)計(jì)算,再利用面積公式計(jì)算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當(dāng)時(shí)等號(hào)成立.,故,,故△ABC面積的最大值為.【點(diǎn)睛】本題考查了正弦定理,面積公式,均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.20、(1);(2).【解析】

(1)由正弦定理化簡(jiǎn)已知等式可得sinBcosA﹣sinAsinB=1,結(jié)合sinB>1,可求tanA=,結(jié)合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據(jù)三角形的面積公式即可計(jì)算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據(jù)正弦定理得到∴b=6,∴S△ABC=ab==6.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.21、(1);(2).【解析】

(1)首先對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)求出a的取值范圍;(2)首先求出的值,再根據(jù)求出實(shí)數(shù)a的取值范圍.【詳解】(1)函數(shù)的定義域?yàn)槭?,,若有兩個(gè)極值點(diǎn),則方程一定有兩個(gè)不等的正根,設(shè)為和,且,所以解得,此時(shí),當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,故是極大值點(diǎn),是極小值點(diǎn),故實(shí)數(shù)a的取值范圍是;(2)由(1)知,,,則,,,由,得,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論