版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、統(tǒng)計學術(shù)語
population總體
sample樣本
census普查
sampling抽樣
quantitative量的
qualitative質(zhì)的
discrete離散的
continuous連續(xù)的
populationparameters總體參數(shù)
samplestatistics樣本統(tǒng)計量
descriptivestatistics敘述統(tǒng)計學
抽樣調(diào)查samplingsurvey
簡單隨機抽樣simplerandomsampling
系統(tǒng)抽樣systematicsampling
分層抽樣stratifiedsampling
整群抽樣clustersampling
多級抽樣multistagesampling
實驗設(shè)計DesignofExperiment)
參數(shù)Parameter
Statistics統(tǒng)計學
Statisticaltable統(tǒng)計表
Statisticalchart統(tǒng)計圖
Piechart圓餅圖
Stem-and-leafdisplay莖葉圖
Histogram直方圖
BarChart長條圖
Polygon多邊形
Expectation期望值
Mode眾數(shù)
Mean平均數(shù)
Variance變異數(shù)
Standarddeviation標準差
Standarderror標準誤
Inferentialstatistics推論統(tǒng)計學
Pointestimation點估計
Intervalestimation區(qū)間估計
Confidenceinterval置信區(qū)間
Confidencecoefficient置信系數(shù)
Regressionanalysis回歸分析
Analysisofvariance變異數(shù)分析
Correlationcoefficient相關(guān)系數(shù)
Reliability信度
Validity效度
Discreteuniformdensities離散的均勻密度
Binomialdensities二項密度
Hypergeometricdensities超幾何密度
Poissondensities卜松密度
Geometricdensities幾何密度
Negativebinomialdensities負二項密度
Continuousuniformdensities連續(xù)均勻密度
Normaldensities正態(tài)密度(分布)
Exponentialdensities指數(shù)密度
Gammadensities伽瑪密度
Betadensities貝他密度
Multivariateanalysis多變量分析
Principalcomponents主因子分析
Discriminationanalysis判另U分析
Clusteranalysis群集分析
Factoranalysis因素分析
Survivalanalysis存活分析
Timeseriesanalysis時間序列分析
Linearmodels線性模式
Probabilitytheory概率率論
Statisticalinference統(tǒng)計推論
Stochasticprocesses隨機過程
Decisiontheory決策理論
Discreteanalysis離散分析
Mathematicalstatistics數(shù)理統(tǒng)計
相關(guān)系數(shù):Correlationcoefficient
算術(shù)平均數(shù)(ArithmeticMean)
元素(Element)郵寄問卷法(MailInterview)
封閉式問題(CloseQuestion)
電話訪問法(TelephoneInterview)
市場調(diào)查(MarketingResearch)
決策樹(DecisionTrees)
容忍誤差(Toleratederro)
數(shù)據(jù)挖掘(DataMining)
初級資料(PrimaryData)
趨勢分析(TrendAnalysis)
神經(jīng)網(wǎng)絡(NeuralNetwork)
人員訪問法(Interview)判別分析法(DiscriminantAnalysis)
集群分析法(clusteranalysis)規(guī)則歸納法(RulesInduction)
內(nèi)容效度(ContentValidity)判斷抽樣(JudgmentSampling)
二、閱讀資料
Frequency
Whencollectinginformation,forinstancethecolorofcarsinacar
park,therewillberepeatedexamplesofparticularcolors.Theremaybe
fouryellowcars,13redcars,eightbluecarsand20carsofothercolors.
Theinformationisqualitative.Thenumberofcarsofeachcoloristhe
frequencyofobservationofthatitemofinformation.
Inevitableingatheringanyinformationtherewillbeacollectionof
frequenciesassociatedwithitemsofdata.Thefrequenciesarenotonly
thedata,theytellussomethingaboutthedistributionofthedata.
Presentationofdata(1)
Qualitativedatamaybepresentedinafrequencytablesuchasthe
onebelow.
Amongthemanyconsiderations,itwouldbeimportanttohavesome
ideasofwhatatypicaltimewaslikelytobe,andthelikelyrangeoftimes.
Thisinformationisnecessarysothatanappropriatetimingdevicecanbe
selected.Therewouldbelittlepointintryingtouseawatch'sminute
handoranelectronictimercapableofrecordingto1/1000ofasecond.It
isalsounlikelytobenecessarytorecordtimesaslongasanhour,butthe
timerneedstobecapableofrecordingmorethanafewseconds.
Therearetwomeasuresrepresentativeofdatawhichmaybeuseful
incaselikethis-onerepresentingthe'typicalvalue5andanotherwhich
indicatesthe'sortofrangeofvalue5likelytobefound.Instatisticalterms,
thesearemeasuresoflocationoraverageanddispersionorspread.
Lifewouldbesimpleiftherewerejustoneofeach,orevenanideal
measureofeachquality.Unfortunately,thisisnotthecase.Thereare
manytypesofaverageandseveralkindsofspread.Inthischapterwe
shallconcentrateonaverages.
Mode
Themodeisthemostcommonlyoccurringvalueoritemofdate,or,
inotherwords,theonethatappearsmostfrequently.Inthecontextofthe
dataunderconsideration,themostcommonlyoccurringvalueis9
seconds.Isitreasonable,though,toconsider9secondsasbeingtypical
ofthetimetakentopassthroughthiscontinentalmotorwaytoll?
Almostcertainlynot!Itmanybemoreappropriatetoconsiderthemodal
class.Referringbacktothediagram,the1-branchhasthegreatest
frequency.Hence,itwouldbereasonabletosaythatthemodeisthetime
between20and30seconds.Thisisthelongestbranchinthe
stem-and-leafdiagram.
Themodalclassmaybetheclasswiththehighestfrequencywhen
thedataarepresentedinafrequencytable,butitmaynot!
Theprominenceofthe20-30secondsclassisapparent.Themethod
assumesthatthemodedividesthemodalclassinthesameratioasthe
increaseinfrequencydensitytothedecreaseinfrequencydensity.Inthe
frequencytable,thisratiois(9-7):(9-6),whichisequivalentto2:3.Hence
themodedividesthemodalclassintheratio2:3,andanestimateofthe
modeis24.Weneedtoaskourselves,howvalidisthisprocess?
WhereWisthewidthofthemodalclass,andxisitslowerbound.
Intheexample,1=2,D=3,W=10andx=20.
Hereestimateofthemode=20+(2/5)*10=24.
Median
Step-by-step
Thecentreormiddleitemofthedataisknownasthemedian.One
approachtoidentifyingthemedianisto:
■placethedatainorder
■locatethemiddleitem
■hence,identifythemedian
Supposeweneedtoidentifythemedianofthefollowingcollection
ofdata.
8,15,7,10,4,3,8,6,5,7,8
Placingthedatainorderyields:
3,4,5,6,7,7,8,8,8,10,15
Themiddleitemistheonewhichisequidistantfromtheextreme
values.
Sincethereareelevenitemsofdata,themiddleisthesixthfrom
eitherend.
Eventotal
Forthecollectionabove,thetotalnumberofitemsisodd,whichled
tothemedianbeingoneoftheactualrecordeditemsofdata.Inthe
followingcase,thetotalisanevennumber,whichmeansthecentervalue
ofthedataismidwaybetweentwooftherecordeditems.
4,5,0,3,9,4,8,9,9,1
Orderingthedatagives:
0,1,3,4,4,5,8,9,9,9
andlocatingthemiddlevalueyields:
Groupedfrequencytable
Ifthedataarepresentedinafrequencytable,thenitisonlypossible
toobtainanestimateofthemedian.Thisisdoneeithergraphicallyor
arithmetically.
Thecumulativefrequenciesforthefrequencytableisgivenbelow.
TimeFrequencyCumulativefrequency
[0,10)44
[10,20)711
[20,30)920
[30,40)626
[40,50)531
[50,60)334
[60,120)943
Groupedfrequencytable
Whatinformationcanbegainedfromthecumulative
frequency?
Considerthecumulativefrequencyof20.thistellsusthatthereare
20itemsofdatawithvalueslessthan30.Similarly,thecumulative
frequencyof34indicatesthatthereare34itemswhicharelessthan60.
Thereisanaturallinkbetweenanygivencumulativefrequencyandthe
upperboundofthecorrespondingclass.Hence,whenitcomesto
constructingacumulativefrequencygraph,thepointstobeplottedcome
fromthefollowingseriesdata.
Range
Perhapsthemostsimplemeasureofspreadisthedifferencebetween
thelargestandsmallestitemsofdatai.e.thedifferencebetweenthe
extremes.Thisistherange.Inthecaseofthemotorwaytolltimesthe
longesttimerecordedwas118secondsandtheshortesttimewas9
seconds,hencetherangeofthesedataisgivenby:
range=118-9-109seconds
Thismeasureofspreaddosenottakeintoaccountanythingabout
thedistributionofthedataotherthantheextremes.Neitherisitvery
reliableortypical.Why?
Quartilespread
Amoretrustworthymeasureistherangeofthemiddlehalfofthe
data.Toidentifythisrangeweneedtofindtheitemsofdatawhichare
positionedhalfwaybetweentheextremesandthemedian.Takethecase
ofthedatafollowing:
Ingeneral,theitemsofdatalyingmidwaybetweenthemedianand
theextremesareknowasthequartiles.Itismoreusualtorefertothemas
thefirstorlowerquartileandthethirdorupperquartile.Thedifference
betweenthemiscalledtheinterquartilerange(IQR)orquartilespread
(QS)
Standarddeviation
Theinterquartilerangemeasuresthespreadofthemiddlehalfofthe
dataandiscloselylinkedtothemedian.Wecandefineameasureof
dispersion,takingintoaccountallthedata,whichislinkedinsteadtothe
mean.
Deviationfromthemean
Supposetheitemsofdata:18,20,21,22,24.
Themeanofthecollectiondatais21,hencethedeviationfromthe
meanare:-3,-1,0,1,3,andtheaverage(ormean)ofthisdeviationsis
theirsumdividedbythenumberofitems.Thisc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省南平市文昌學校2020-2021學年高一物理上學期期末試卷含解析
- 福建省南平市外屯中學2021-2022學年高一英語下學期期末試卷含解析
- 4 上學路上 第二課時 說課稿-2023-2024學年道德與法治一年級上冊統(tǒng)編版
- 雙十二消費者體驗解讀
- 12 故宮博物院 說課稿-2024-2025學年語文六年級上冊統(tǒng)編版
- 歷史巨人典故解讀
- 科研之路揭秘
- 科技驅(qū)動:未來掌控者
- 外包施工合同(2篇)
- 2024活動協(xié)作:權(quán)利與義務規(guī)定
- 2024年江蘇省《輔警招聘考試必刷500題》考試題庫帶答案(達標題)
- GB/T 39733-2024再生鋼鐵原料
- 第二章 粉體制備
- 《工業(yè)機器人現(xiàn)場編程》課件-任務3.涂膠機器人工作站
- 預應力空心板計算
- 中國能源展望2060(2025年版)
- 2024年年第三方檢測行業(yè)分析報告及未來五至十年行業(yè)發(fā)展報告
- 李四光《看看我們的地球》原文閱讀
- GA/T 1740.2-2024旅游景區(qū)安全防范要求第2部分:湖泊型
- 華為公司戰(zhàn)略發(fā)展規(guī)劃匯報
- 2025年社區(qū)工作者考試試題庫及答案
評論
0/150
提交評論