人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第06講 拓展一:數(shù)列求通項(xiàng)(教師版)_第1頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第06講 拓展一:數(shù)列求通項(xiàng)(教師版)_第2頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第06講 拓展一:數(shù)列求通項(xiàng)(教師版)_第3頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第06講 拓展一:數(shù)列求通項(xiàng)(教師版)_第4頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第06講 拓展一:數(shù)列求通項(xiàng)(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第06講拓展一:數(shù)列求通項(xiàng)一、知識(shí)點(diǎn)歸納知識(shí)點(diǎn)一:數(shù)列求通項(xiàng)(SKIPIF1<0法、SKIPIF1<0法)1對(duì)于數(shù)列SKIPIF1<0,前SKIPIF1<0項(xiàng)和記為SKIPIF1<0;①SKIPIF1<0;②SKIPIF1<0②:SKIPIF1<0SKIPIF1<0法歸類角度1:已知SKIPIF1<0與SKIPIF1<0的關(guān)系;或SKIPIF1<0與SKIPIF1<0的關(guān)系用SKIPIF1<0,得到SKIPIF1<0例子:已知SKIPIF1<0,求SKIPIF1<0角度2:已知SKIPIF1<0與SKIPIF1<0的關(guān)系;或SKIPIF1<0與SKIPIF1<0的關(guān)系SKIPIF1<0替換題目中的SKIPIF1<0例子:已知SKIPIF1<0;已知SKIPIF1<0角度3:已知等式中左側(cè)含有:SKIPIF1<0作差法(類似SKIPIF1<0)例子:已知SKIPIF1<0求SKIPIF1<02對(duì)于數(shù)列SKIPIF1<0,前SKIPIF1<0項(xiàng)積記為SKIPIF1<0;①SKIPIF1<0;②SKIPIF1<0①SKIPIF1<0②:SKIPIF1<0SKIPIF1<0法歸類角度1:已知SKIPIF1<0和SKIPIF1<0的關(guān)系角度1:用SKIPIF1<0,得到SKIPIF1<0例子:SKIPIF1<0的前SKIPIF1<0項(xiàng)之積SKIPIF1<0.角度2:已知SKIPIF1<0和SKIPIF1<0的關(guān)系角度1:用SKIPIF1<0替換題目中SKIPIF1<0例子:已知數(shù)列SKIPIF1<0的前n項(xiàng)積為SKIPIF1<0,且SKIPIF1<0.知識(shí)點(diǎn)二:累加法(疊加法)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱數(shù)列SKIPIF1<0為“變差數(shù)列”,求變差數(shù)列SKIPIF1<0的通項(xiàng)時(shí),利用恒等式SKIPIF1<0求通項(xiàng)公式的方法稱為累加法。具體步驟:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0將上述SKIPIF1<0個(gè)式子相加(左邊加左邊,右邊加右邊)得:SKIPIF1<0=SKIPIF1<0整理得:SKIPIF1<0=SKIPIF1<0知識(shí)點(diǎn)三:累乘法(疊乘法)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱數(shù)列SKIPIF1<0為“變比數(shù)列”,求變比數(shù)列SKIPIF1<0的通項(xiàng)時(shí),利用SKIPIF1<0求通項(xiàng)公式的方法稱為累乘法。具體步驟:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0將上述SKIPIF1<0個(gè)式子相乘(左邊乘左邊,右邊乘右邊)得:SKIPIF1<0整理得:SKIPIF1<0知識(shí)點(diǎn)四:構(gòu)造法類型1:用“待定系數(shù)法”構(gòu)造等比數(shù)列形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)的數(shù)列,可用“待定系數(shù)法”將原等式變形為SKIPIF1<0(其中:SKIPIF1<0),由此構(gòu)造出新的等比數(shù)列SKIPIF1<0,先求出SKIPIF1<0的通項(xiàng),從而求出數(shù)列SKIPIF1<0的通項(xiàng)公式.標(biāo)準(zhǔn)模型:SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)或SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)類型2:用“同除法”構(gòu)造等差數(shù)列(1)形如SKIPIF1<0,可通過(guò)兩邊同除SKIPIF1<0,將它轉(zhuǎn)化為SKIPIF1<0,從而構(gòu)造數(shù)列SKIPIF1<0為等差數(shù)列,先求出SKIPIF1<0的通項(xiàng),便可求得SKIPIF1<0的通項(xiàng)公式.(2)形如SKIPIF1<0,可通過(guò)兩邊同除SKIPIF1<0,將它轉(zhuǎn)化為SKIPIF1<0,換元令:SKIPIF1<0,則原式化為:SKIPIF1<0,先利用構(gòu)造法類型1求出SKIPIF1<0,再求出SKIPIF1<0的通項(xiàng)公式.(3)形如SKIPIF1<0的數(shù)列,可通過(guò)兩邊同除以SKIPIF1<0,變形為SKIPIF1<0的形式,從而構(gòu)造出新的等差數(shù)列SKIPIF1<0,先求出SKIPIF1<0的通項(xiàng),便可求得SKIPIF1<0的通項(xiàng)公式.知識(shí)點(diǎn)五:倒數(shù)法用“倒數(shù)變換法”構(gòu)造等差數(shù)列類型1:形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)的數(shù)列,通過(guò)兩邊取“倒”,變形為SKIPIF1<0,即:SKIPIF1<0,從而構(gòu)造出新的等差數(shù)列SKIPIF1<0,先求出SKIPIF1<0的通項(xiàng),即可求得SKIPIF1<0.類型2:形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)的數(shù)列,通過(guò)兩邊取“倒”,變形為SKIPIF1<0,可通過(guò)換元:SKIPIF1<0,化簡(jiǎn)為:SKIPIF1<0(此類型符構(gòu)造法類型1:用“待定系數(shù)法”構(gòu)造等比數(shù)列:形如SKIPIF1<0(SKIPIF1<0為常數(shù),SKIPIF1<0)的數(shù)列,可用“待定系數(shù)法”將原等式變形為SKIPIF1<0(其中:SKIPIF1<0),由此構(gòu)造出新的等比數(shù)列SKIPIF1<0,先求出SKIPIF1<0的通項(xiàng),從而求出數(shù)列SKIPIF1<0的通項(xiàng)公式.)知識(shí)點(diǎn)六:隔項(xiàng)等差數(shù)列已知數(shù)列SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0SKIPIF1<0(其中SKIPIF1<0為常數(shù));或SKIPIF1<0則稱數(shù)列SKIPIF1<0為隔項(xiàng)等差數(shù)列,其中:①SKIPIF1<0構(gòu)成以SKIPIF1<0為首項(xiàng)的等差數(shù)列,公差為SKIPIF1<0;②SKIPIF1<0構(gòu)成以SKIPIF1<0為首項(xiàng)的等差數(shù)列,公差為SKIPIF1<0;知識(shí)點(diǎn)七:隔項(xiàng)等比數(shù)列已知數(shù)列SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0SKIPIF1<0(其中SKIPIF1<0為常數(shù));或SKIPIF1<0則稱數(shù)列SKIPIF1<0為隔項(xiàng)等比數(shù)列,其中:①SKIPIF1<0構(gòu)成以SKIPIF1<0為首項(xiàng)的等比數(shù)列,公比為SKIPIF1<0;②SKIPIF1<0構(gòu)成以SKIPIF1<0為首項(xiàng)的等比數(shù)列,公比為SKIPIF1<0;二、題型精講題型01SKIPIF1<0法(用SKIPIF1<0,得到SKIPIF1<0)1.(多選)(2023秋·吉林長(zhǎng)春·高三校考階段練習(xí))設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0是等比數(shù)列 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,故D正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不滿足上式,所以SKIPIF1<0,故A錯(cuò)誤;因?yàn)镾KIPIF1<0,故B正確;因?yàn)镾KIPIF1<0,故C錯(cuò)誤.故選:BD.2.(2023秋·上海普陀·高二上海市晉元高級(jí)中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0不適合上式,故SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,故答案為:SKIPIF1<03.(2023秋·上海徐匯·高三上海市南洋模范中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0是等差數(shù)列,則SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【詳解】由SKIPIF1<0知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,若數(shù)列SKIPIF1<0是等差數(shù)列,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.4.(2023秋·甘肅慶陽(yáng)·高二??茧A段練習(xí))已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足,SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0得SKIPIF1<0,故兩式相減可得:SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,由于SKIPIF1<0各項(xiàng)均為正數(shù),所以SKIPIF1<0,故SKIPIF1<0(常數(shù)),又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,所以數(shù)列SKIPIF1<0是以1為首項(xiàng),1為公差的等差數(shù)列;故SKIPIF1<0.(2)由(1)得:SKIPIF1<0時(shí),SKIPIF1<0;所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0也符合上式,故SKIPIF1<05.(2023秋·福建廈門·高三廈門大學(xué)附屬科技中學(xué)校考階段練習(xí))已知各項(xiàng)為正的數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,依此類推,求SKIPIF1<0的通項(xiàng)公式.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0①,所以SKIPIF1<0②②-①兩得SKIPIF1<0,即SKIPIF1<0,又因SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.(2)設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0.SKIPIF1<0為SKIPIF1<0中的n項(xiàng)之和,SKIPIF1<0為SKIPIF1<0中的前SKIPIF1<0項(xiàng)和.SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0也滿足上式.故SKIPIF1<0.6.(2023·湖北黃岡·黃岡中學(xué)??既#┮阎?xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)將數(shù)列SKIPIF1<0和數(shù)列SKIPIF1<0中所有的項(xiàng),按照從小到大的順序排列得到一個(gè)新數(shù)列SKIPIF1<0,求SKIPIF1<0的前100項(xiàng)和.【答案】(1)SKIPIF1<0(2)9089【詳解】(1)依題意SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),解得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,作差得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是首項(xiàng)為3,公差為2的等差數(shù)列,SKIPIF1<0.(2)由(1)得,SKIPIF1<0,又SKIPIF1<0,同時(shí)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0的前100項(xiàng)和為9089.題型02SKIPIF1<0法(將題意中的SKIPIF1<0用SKIPIF1<0替換)1.(多選)(2023·遼寧沈陽(yáng)·東北育才學(xué)校??寄M預(yù)測(cè))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(

)A.?dāng)?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0B.?dāng)?shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0不是遞增數(shù)列D.?dāng)?shù)列SKIPIF1<0為遞增數(shù)列【答案】CD【詳解】SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,故SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.對(duì)選項(xiàng)A:SKIPIF1<0,錯(cuò)誤;對(duì)選項(xiàng)B:SKIPIF1<0,錯(cuò)誤;對(duì)選項(xiàng)C:SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0不是遞增數(shù)列,正確;對(duì)選項(xiàng)D:SKIPIF1<0,故數(shù)列SKIPIF1<0為遞增數(shù)列,正確;故選:CD.2.(2023·全國(guó)·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得到SKIPIF1<0,然后兩邊同除以SKIPIF1<0得到SKIPIF1<0,即SKIPIF1<0,于是數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.而SKIPIF1<0,于是SKIPIF1<0,進(jìn)而得到SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0(SKIPIF1<0).綜上所述,SKIPIF1<0.故答案為:SKIPIF1<03.(2023秋·貴州黔東南·高三天柱民族中學(xué)校聯(lián)考階段練習(xí))已知正項(xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,由數(shù)列為正項(xiàng)數(shù)列可知,SKIPIF1<0,又SKIPIF1<0,即數(shù)列SKIPIF1<0是首項(xiàng)為1,公差為1的等差數(shù)列,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,所以SKIPIF1<0(2)由(1)可知,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,成立,SKIPIF1<0,成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0.綜上可知,SKIPIF1<0,得證.4.(2023春·河南許昌·高二統(tǒng)考期末)已知數(shù)列SKIPIF1<0,SKIPIF1<0,其前n項(xiàng)的和為SKIPIF1<0,且滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0是以3為首項(xiàng),3為公差的等差數(shù)列,所以SKIPIF1<0,則SKIPIF1<0,從而當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然SKIPIF1<0,SKIPIF1<0不符合上式,故數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0(2)由(1)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故不等式成立.5.(2023春·遼寧沈陽(yáng)·高二東北育才學(xué)校校考期中)設(shè)正項(xiàng)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為首項(xiàng),1為公差的等差數(shù)列,所以SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0也滿足上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由SKIPIF1<0知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0①,則SKIPIF1<0②,由SKIPIF1<0得:SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0也滿足上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.6.(2023·安徽阜陽(yáng)·安徽省臨泉第一中學(xué)??既#┮阎獢?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,證明:數(shù)列SKIPIF1<0為等差數(shù)列.(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)證明見(jiàn)解析(2)33【詳解】(1)(1)由已知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故數(shù)列SKIPIF1<0為公差為1等差數(shù)列(2)因?yàn)镾KIPIF1<0,不滿足條件,此時(shí)SKIPIF1<0,SKIPIF1<0,由(1)知數(shù)列SKIPIF1<0為首項(xiàng)為1公差為1等差數(shù)列,所以SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故滿足SKIPIF1<0的n最小值為33.題型03SKIPIF1<0法(已知等式中左側(cè)含有:SKIPIF1<0)1.(多選)(2023秋·山東濰坊·高三統(tǒng)考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則(

)A.SKIPIF1<0B.SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0C.SKIPIF1<0的前100項(xiàng)和為SKIPIF1<0D.SKIPIF1<0的前20項(xiàng)和為284【答案】ABD【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相減可得:SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足SKIPIF1<0,故SKIPIF1<0,故A正確;SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,故B正確;令SKIPIF1<0,SKIPIF1<0的前100項(xiàng)和為:SKIPIF1<0,故C錯(cuò)誤;令SKIPIF1<0,所以SKIPIF1<0的前20項(xiàng)和為:SKIPIF1<0SKIPIF1<0SKIPIF1<0,故D正確.故選:ABD.2.(2023秋·天津津南·高二??计谀┮阎獢?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題設(shè)SKIPIF1<0且SKIPIF1<0(n≥2),故SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0也滿足,故SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B3.(2023秋·湖北·高三黃石二中校聯(lián)考階段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0【詳解】(1)解:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,作差,得SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,滿足SKIPIF1<0,即SKIPIF1<0為常數(shù)列,即SKIPIF1<0,SKIPIF1<0.4.(2023春·湖北恩施·高二校聯(lián)考期中)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)之積為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0,SKIPIF1<0【詳解】(1)SKIPIF1<0①,SKIPIF1<0②,①-②可得SKIPIF1<0也滿足上式,SKIPIF1<0③.SKIPIF1<0數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)之積為SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,代入③可得SKIPIF1<0,SKIPIF1<0.5.(2023秋·四川眉山·高三??奸_學(xué)考試)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;【答案】(1)SKIPIF1<0【詳解】(1)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0①,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,①SKIPIF1<0②得:SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,也滿足上式,故SKIPIF1<0.6.(2023春·河南南陽(yáng)·高二??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的值;【答案】(1)SKIPIF1<0【詳解】(1)由題意可知:數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0;又因?yàn)镾KIPIF1<0也符合SKIPIF1<0,所以SKIPIF1<0.題型04累加法1.(2023秋·江蘇無(wú)錫·高二江蘇省南菁高級(jí)中學(xué)校考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:C.2.(2023春·遼寧朝陽(yáng)·高二建平縣實(shí)驗(yàn)中學(xué)校考階段練習(xí))已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0取最小值時(shí),SKIPIF1<0(

)A.3 B.4 C.5 D.6【答案】B【詳解】由已知可得SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,SKIPIF1<0,將上面式子左右兩邊分別相加可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為減函數(shù),SKIPIF1<0時(shí),SKIPIF1<0為增函數(shù),且SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0∴SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值.故選:B.3.(2023秋·甘肅金昌·高二永昌縣第一高級(jí)中學(xué)校考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)閿?shù)列SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿足上式.綜上所述,SKIPIF1<0.故答案為:SKIPIF1<0.4.(2023·全國(guó)·高三專題練習(xí))若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,而SKIPIF1<0滿足上式,所以SKIPIF1<0.故答案為:SKIPIF1<0.5.(2023秋·重慶九龍坡·高三重慶實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校??茧A段練習(xí))已知數(shù)列{SKIPIF1<0}中,SKIPIF1<0,且SKIPIF1<0.其中SKIPIF1<0,(1)求數(shù)列{SKIPIF1<0}的通項(xiàng)公式;【答案】(1)SKIPIF1<0,SKIPIF1<0;【詳解】(1)(法一)由題意知,SKIPIF1<0,則SKIPIF1<0,累加得:SKIPIF1<0且SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0符合上式,故SKIPIF1<0.(法二)由題意知,SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0則SKIPIF1<0.6.(2023秋·高二課時(shí)練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0【詳解】由題設(shè)SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,顯然SKIPIF1<0滿足上式,所以SKIPIF1<07.(2023·全國(guó)·高三專題練習(xí))若在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,求通項(xiàng)SKIPIF1<0.【答案】SKIPIF1<0.【詳解】由SKIPIF1<0,得SKIPIF1<0以上個(gè)式子相加,又SKIPIF1<0,所以SKIPIF1<0.題型05累乘法1.(2023秋·福建漳州·高二??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,上述各式相乘得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,經(jīng)檢驗(yàn),SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0.故選:D.2.(2023·全國(guó)·高三專題練習(xí))在數(shù)列SKIPIF1<0中,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【詳解】由題意知SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,故答案為:SKIPIF1<03.(2023·全國(guó)·高二專題練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0(n∈N*),且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【詳解】解:由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,累乘得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.4.(2023·全國(guó)·高二專題練習(xí))若數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【詳解】解:SKIPIF1<0數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.5.(2023秋·江蘇·高二專題練習(xí))已知:SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)求數(shù)列SKIPIF1<0的通項(xiàng).【答案】SKIPIF1<0.【詳解】在數(shù)列SKIPIF1<0中,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0也滿足上式,所以數(shù)列SKIPIF1<0的通項(xiàng)是SKIPIF1<0.6.(2023·全國(guó)·高二專題練習(xí))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【答案】SKIPIF1<0.【詳解】由題意得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0也滿足上式,所以SKIPIF1<0.故SKIPIF1<0.題型06構(gòu)造法1.(2023春·河南許昌·高二??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由SKIPIF1<0得SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0是首項(xiàng)為2,公比為2的等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0.故選:D2.(2023·全國(guó)·高二專題練習(xí))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0等于(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0所以SKIPIF1<0所以數(shù)列SKIPIF1<0是一個(gè)以2為首項(xiàng),以4為公比的等比數(shù)列,所以SKIPIF1<0.故選:C3.(2023秋·陜西商洛·高三陜西省山陽(yáng)中學(xué)校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則滿足SKIPIF1<0的最小正整數(shù)SKIPIF1<0.【答案】5【詳解】由SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.另一方面由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為3的等比數(shù)列,所以SKIPIF1<0,易知SKIPIF1<0是遞增數(shù)列,又SKIPIF1<0,SKIPIF1<0,所以滿足SKIPIF1<0的最小正整數(shù)SKIPIF1<0.故答案為:5.4.(2023春·江西南昌·高二南昌二中校考階段練習(xí))數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則此數(shù)列的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<05.(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【詳解】∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,∴數(shù)列SKIPIF1<0是以3為首項(xiàng),1為公差的等差數(shù)列,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.故答案為:SKIPIF1<0.6.(2023秋·福建龍巖·高二福建省連城縣第一中學(xué)校考階段練習(xí))已知在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.題型07倒數(shù)法1.(多選)(2023春·湖南岳陽(yáng)·高二??奸_學(xué)考試)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則下列結(jié)論正確的有()A.SKIPIF1<0為等比數(shù)列B.SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0C.SKIPIF1<0為遞增數(shù)列D.SKIPIF1<0的前n項(xiàng)和SKIPIF1<0【答案】ABD【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0+3,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以數(shù)列SKIPIF1<0是以4為首項(xiàng),2為公比的等比數(shù)列,故A正確;SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論