浙江省義烏地區(qū)2023-2024學年中考數學最后一模試卷含解析_第1頁
浙江省義烏地區(qū)2023-2024學年中考數學最后一模試卷含解析_第2頁
浙江省義烏地區(qū)2023-2024學年中考數學最后一模試卷含解析_第3頁
浙江省義烏地區(qū)2023-2024學年中考數學最后一模試卷含解析_第4頁
浙江省義烏地區(qū)2023-2024學年中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省義烏地區(qū)2023-2024學年中考數學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某班為獎勵在學校運動會上取得好成績的同學,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.2.下列各組數中,互為相反數的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|3.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t54.如圖,菱形ABCD中,E.F分別是AB、AC的中點,若EF=3,則菱形ABCD的周長是()A.12 B.16 C.20 D.245.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為()A.(,2) B.(4,1) C.(4,) D.(4,)6.3月22日,美國宣布將對約600億美元進口自中國的商品加征關稅,中國商務部隨即公布擬對約30億美元自美進口商品加征關稅,并表示,中國不希望打貿易戰(zhàn),但絕不懼怕貿易戰(zhàn),有信心,有能力應對任何挑戰(zhàn).將數據30億用科學記數法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10107.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個8.如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-23;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2A.1個B.2個C.3個D.4個9.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元10.A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設B種飲料單價為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=1311.如圖,以AD為直徑的半圓O經過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.12.下列各數:1.414,,﹣,0,其中是無理數的為()A.1.414 B. C.﹣ D.0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線l⊥x軸于點P,且與反比例函數y1=(x>0)及y2=(x>0)的圖象分別交于點A,B,連接OA,OB,已知△OAB的面積為2,則k1-k2=________.14.如圖,反比例函數y=(x<0)的圖象經過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經軸對稱變換得到的點B'在此反比例函數的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+15.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是16.有一個計算程序,每次運算都是把一個數先乘以2,再除以它與1的和,多次重復進行這種運算的過程如下:則,y2=_____,第n次的運算結果yn=_____.(用含字母x和n的代數式表示).17.如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AC與BD相交于點E,AC=BC,DE=3,AD=5,則⊙O的半徑為___________.18.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一名在校大學生利用“互聯(lián)網+”自主創(chuàng)業(yè),銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?20.(6分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=

,cos37°=

,tan37°=

(1)求把手端點A到BD的距離;

(2)求CH的長.

21.(6分)我們來定義一種新運算:對于任意實數x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計算(﹣3)※9(2)嘉琪研究運算“※”之后認為它滿足交換律,你認為她的判斷(正確、錯誤)(3)請你幫助嘉琪完成她對運算“※”是否滿足結合律的證明.22.(8分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發(fā)運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?23.(8分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2)畫出△ABC關于點B成中心對稱的圖形△A1BC1;以原點O為位似中心,位似比為1:2,在y軸的左側畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2的坐標.24.(10分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.25.(10分)在平面直角坐標系xOy中,函數(x>0)的圖象與直線l1:y=x+b交于點A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點B,與直線l1交于點C,若S△ABC≥6,求m的取值范圍.26.(12分)全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.27.(12分)某工廠計劃生產A、B兩種產品共60件,需購買甲、乙兩種材料.生產一件A產品需甲種材料4千克,乙種材料1千克;生產一件B產品需甲、乙兩種材料各3千克.經測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產B產品要超過38件,問有哪幾種符合條件的生產方案?(3)在(2)的條件下,若生產一件A產品需加工費40元,若生產一件B產品需加工費50元,應選擇哪種生產方案,才能使生產這批產品的成本最低?請直接寫出方案.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據題意設未知數,找到等量關系即可解題,見詳解.【詳解】解:設購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【點睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關系是解題關鍵.2、A【解析】

根據相反數的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數,正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數,故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數的定義,解題的關鍵是掌握相反數的定義.3、D【解析】選項A,根據同底數冪的乘法可得原式=t10;選項B,不是同類項,不能合并;選項C,根據同底數冪的乘法可得原式=t7;選項D,根據同底數冪的乘法可得原式=t5,四個選項中只有選項D正確,故選D.4、D【解析】

根據三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據菱形的周長公式列式計算即可得解.【詳解】、分別是、的中點,是的中位線,,菱形的周長.故選:.【點睛】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關鍵.5、D【解析】

由已知條件得到AD′=AD=4,AO=AB=2,根據勾股定理得到OD′==2,于是得到結論.【詳解】解:∵AD′=AD=4,

AO=AB=1,

∴OD′==2,

∵C′D′=4,C′D′∥AB,

∴C′(4,2),故選:D.【點睛】本題考查正方形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題關鍵.6、A【解析】

科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】將數據30億用科學記數法表示為,故選A.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.7、C【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.8、D【解析】

利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數的性質可對③進行判斷;根據拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點坐標(1,n),∴x=1時,二次函數值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點坐標(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,所以④正確.故選D.【點睛】本題考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.9、B【解析】試題分析:通過理解題意可知本題的等量關系,即每件作服裝仍可獲利=按成本價提高40%后標價,又以8折賣出,根據這兩個等量關系,可列出方程,再求解.解:設這種服裝每件的成本是x元,根據題意列方程得:x+15=(x+40%x)×80%解這個方程得:x=125則這種服裝每件的成本是125元.故選B.考點:一元一次方程的應用.10、A【解析】

要列方程,首先要根據題意找出題中存在的等量關系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數1元,明確了等量關系再列方程就不那么難了.【詳解】設B種飲料單價為x元/瓶,則A種飲料單價為(x-1)元/瓶,根據小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.【點睛】列方程題的關鍵是找出題中存在的等量關系,此題的等量關系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.11、D【解析】

連接BD,BE,BO,EO,先根據B、E是半圓弧的三等分點求出圓心角∠BOD的度數,再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉化將陰影部分的面積轉化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關性質是解題的關鍵.12、B【解析】試題分析:根據無理數的定義可得是無理數.故答案選B.考點:無理數的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】

試題分析:∵反比例函數(x>1)及(x>1)的圖象均在第一象限內,∴>1,>1.∵AP⊥x軸,∴S△OAP=,S△OBP=,∴S△OAB=S△OAP﹣S△OBP==2,解得:=2.故答案為2.14、A【解析】

根據反比例函數圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數的綜合題,解決本題要掌握反比例函數圖象上點的坐標特征、等腰直角三角形的性質和軸對稱的性質及會用求根公式法解一元二次方程.15、4【解析】

當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質,垂徑定理,平行線的性質,此類問題是初中數學的重點和難點,在中考中極為常見,一般以壓軸題形式出現,難度較大.16、【解析】

根據題目中的程序可以分別計算出y2和yn,從而可以解答本題.【詳解】∵y1=,∴y2===,y3=,……yn=.故答案為:.【點睛】本題考查了分式的混合運算,解答本題的關鍵是明確題意,用代數式表示出相應的y2和yn.17、【解析】

如圖,作輔助線CF;證明CF⊥AB(垂徑定理的推論);證明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的長,即可解決問題.【詳解】如圖,連接CO并延長,交AB于點F;∵AC=BC,∴CF⊥AB(垂徑定理的推論);∵BD是⊙O的直徑,∴AD⊥AB;設⊙O的半徑為r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案為.【點睛】該題主要考查了相似三角形的判定及其性質、垂徑定理的推論等幾何知識點的應用問題;解題的關鍵是作輔助線,構造相似三角形,靈活運用有關定來分析、判斷.18、A【解析】

根據主視圖和左視圖可知該幾何體是柱體,根據俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據主視圖和左視圖可知該幾何體是柱體,根據俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【點睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=-x+40(10≤x≤16);(2)每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【解析】

根據題可設出一般式,再由圖中數據帶入可得答案,根據題目中的x的取值可得結果.②由總利潤=數量×單間商品的利潤可得函數式,可得解析式為一元二次式,配成頂點式可求出最大利潤時的銷售價,即可得出答案.【詳解】(1)y=-x+40(10≤x≤16).(2)根據題意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴當x<25時,W隨x的增大而增大∵10≤x≤16∴當x=16時,W取得最大值,最大值是144答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】熟悉掌握圖中所給信息以及列方程組是解決本題的關鍵.20、(1)12;(2)CH的長度是10cm.【解析】

(1)、過點A作于點N,過點M作于點Q,根據Rt△AMQ中α的三角函數得出得出AN的長度;(2)、根據△ANB和△AGC相似得出DN的長度,然后求出BN的長度,最后求出GC的長度,從而得出答案.【詳解】解:(1)、過點A作于點N,過點M作于點Q.在中,.∴,∴,∴.(2)、根據題意:∥.∴.∴.∵,∴.∴.∴.∴.答:的長度是10cm.點睛:本題考查了相似三角形的應用以及三角函數的應用,在運用數學知識解決問題過程中,關注核心內容,經歷測量、運算、建模等數學實踐活動為主線的問題探究過程,突出考查數學的應用意識和解決問題的能力,蘊含數學建模,引導學生關注生活,利用數學方法解決實際問題.21、(1)-21;(2)正確;(3)運算“※”滿足結合律【解析】

(1)根據新定義運算法則即可求出答案.(2)只需根據整式的運算證明法則a※b=b※a即可判斷.(3)只需根據整式的運算法則證明(a※b)※c=a※(b※c)即可判斷.【詳解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故滿足交換律,故她判斷正確;(3)由已知把原式化簡得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴運算“※”滿足結合律【點睛】本題考查新定義運算,解題的關鍵是正確理解新定義運算的法則,本題屬于中等題型.22、(1)t=秒;(1)t=5﹣(s).【解析】

(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根據三角形的面積公式列出方程求解即可.【詳解】解:(1)∵點A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵點P的速度是每秒1個單位,點Q的速度是每秒1個單位,∴AQ=t,AP=10﹣t,①∠APQ是直角時,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角時,△AQP∽△AOB,∴,即,解得t=,綜上所述,t=秒時,△APQ與△AOB相似;(1)如圖,過點P作PC⊥OA于點C,則PC=AP?sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面積=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故當t=5﹣(s)時,△APQ的面積為8cm1.【點睛】本題主要考查了相似三角形的判定與性質、銳角三角函數、三角形的面積以及一元二次方程的應用能力,分類討論是解題的關鍵.23、(1)畫圖見解析;(2)畫圖見解析,C2的坐標為(﹣6,4).【解析】試題分析:利用關于點對稱的性質得出的坐標進而得出答案;

利用關于原點位似圖形的性質得出對應點位置進而得出答案.試題解析:(1)△A1BC1如圖所示.(2)△A2B2C2如圖所示,點C2的坐標為(-6,4).24、(1)證明見解析;(2)CD的長為2.【解析】

(1)首先證得△ADE≌△CDE,由全等三角形的性質可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據30°的性質和勾股定理可求出EF和DF的長,在Rt△CEF中,根據勾股定理可求出CF的長,從而可求CD的長.【詳解】證明:(1)在△ADE與△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四邊形ABCD為平行四邊形,∵AD=CD,∴四邊形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【點睛】本題考查了全等三角形的判定與性質,平行線的性質,菱形的判定,含30°的直角三角形的性質,勾股定理.證明AD=BC是解(1)的關鍵,作EF⊥CD于F,構造直角三角形是解(2)的關鍵.25、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】

(1)把A點坐標代入反比例解析式確定出a的值,確定出A坐標,代入一次函數解析式求出b的值;(2)分別求出直線l1與x軸交于點D,再求出直線l2與x軸交于點B,從而得出直線l2與直線l1交于點C坐標,分兩種情況進行討論:①當S△ABC=S△BCD+S△ABD=6時,利用三角形的面積求出m的值,②當S△ABC=S△BCD?S△ABD=6時,利用三角形的面積求出m的值,從而得出m的取值范圍.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論