![面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第1頁(yè)](http://file4.renrendoc.com/view4/M00/16/18/wKhkGGZPImmAF4QEAAEEiCNPmEM251.jpg)
![面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第2頁(yè)](http://file4.renrendoc.com/view4/M00/16/18/wKhkGGZPImmAF4QEAAEEiCNPmEM2512.jpg)
![面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第3頁(yè)](http://file4.renrendoc.com/view4/M00/16/18/wKhkGGZPImmAF4QEAAEEiCNPmEM2513.jpg)
![面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第4頁(yè)](http://file4.renrendoc.com/view4/M00/16/18/wKhkGGZPImmAF4QEAAEEiCNPmEM2514.jpg)
![面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第5頁(yè)](http://file4.renrendoc.com/view4/M00/16/18/wKhkGGZPImmAF4QEAAEEiCNPmEM2515.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PreliminaryStudyofAdvancedTechnologies
towards6GEra:QITs
2021
1/33
PreliminaryStudyofAdvancedTechnologies
towards6GEra:QITs
2021
2/33
ExecutiveSummary
Withthelarge-scalecommercializationof5Gin2021,theglobalindustryhaswitnessedastartingofexplorationandresearchonthe6thgeneration(6G)communicationsystems.6Gwillbuildanewtypeofnetworkthatisintelligentlyandefficientlyinterconnectedbetweenhumans,machineandthings.Onthebasisofgreatlyimprovingthenetworkcapability,ithasnewfunctionssuchasendogenousintelligence,multi-dimensionalperception,digitaltwin,endogenousnetworksecurityandsoon.Withthein-depthresearchon6Gnetworkandkeytechnologies,itsintegrationandapplicationwithQuantumInformationTechnologies(QITs)willbecomethefocusinthe
future.
In6Gera,theimportanceofcybersecurityinmobilecommunicationsisexpectedtoriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.Inthefirstpart,thiswhitepapergivesanoverviewofQuantumSecureCommunication.Startingwithenablingtechnologiesofquantumkeydistribution(QKD),standardizationactivitiesforQKDanditsnetworkingtechnologiesarepresented,followedbyimplicationsofQKDfor6G.Inparticular,twotypicalapplicationsscenariosareintroduced.OneisthequantumencryptionsystemthatwillbeappliedtotheconstructionofWinterOlympicsSmartParkandXiong'anNewArea.TheotherisinXiong’anquantumcommunicationpilot,whereaquantumcommunicationtrunklinebetweenBeijingandXiong’anwillbedeployed,andaquantumkeydistributionplatformwillbeintroducedtoprovidesecuritykeysforcustomersinthefieldsofInternetofthings,Internetof
vehicles,smartenergy,smartgovernmentandsoon.
Theprovisionsofamany-foldincreaseinthe6Gcommunicationsystemperformancealongsidewithrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQuantumMachineLearning(QML)hasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Inthesecondpart,followedbypreliminaryknowledgesofmachinelearning(ML)basicparadigmsandtheirapplicationinsolvingproblemacrossdifferentlayersofincommunicationsystems,andquantumtools,this
whitepaperpresentsexamplestogetinsightintotheresearchofQML.
3/33
TableofContents
ExecutiveSummary
2
1Introduction
4
2QuantumSecureCommunication
6
2.1EnablingTechnologiesforQuantumSecureCommunication
6
2.1.1OverallPicture
6
2.1.2TypesofQKD
6
2.1.3TheNeededOptoelectronicComponentsofQKDandtheLow-Cost
Implementation
8
2.2StandardizationActivitiesforQKDN
1
0
2.2.1ITU-T
1
1
ITU-TStudyGroup11
1
1
ITU-TStudyGroup13
1
1
ITU-TStudyGroup17
1
4
2.2.2ETSIISG-QKD
1
6
2.2.3ISO/IECJTC1/SC27
1
7
2.3Implicationsfor6G
1
8
2.3.1State-of-the-artofQKDin5G
1
8
2.3.2Integrationof6GandQITs
1
9
2.3.3TypicalApplicationScenariosofQKD
2
0
3QuantumMachineLearning(QML)
2
3
3.1MachineLearningforCommunicationSystems
2
4
3.2QuantumTools
2
6
3.3QMLforCommunicationSystems
2
7
3.3.1Quantum-enhancedMachineLearning
2
7
3.3.2MachineLearningofQuantumSystems
2
8
3.3.3QuantumLearningTheory
2
8
4Reference
3
0
Acknowledgement
3
2
Abbreviation
3
2
4/33
1Introduction
Thescopeofthisannuallyrevisedwhitepaperistointroducequantuminformationtechnologies(QITs)withtheaimoftakingadvantagesoftheirpowerfulinformationprocessingcapabilitiestofulfilstringentdemandsofcommunicationandcomputingenvisagedby6Gsystems.Ourpreviousversionin2020presenttheoverviewofQITsfromtheperspectivesofQITs&QuantumInternetandQTIsforClassicalSignalProcessing,respectively.Theversionof2021willfurtherintroducefromtwobenefitsexpectedfromQITstocommunicationsystems,i.e.,secure
communicationandenhancedinformationprocessingcapability.
Chapter2.QuantumSecureCommunication
In6Gera,theimportanceofcybersecurityinmobilecommunicationsisexpectedtoriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.Chapter2givesanoverviewofQuantumSecureCommunication.Startingwithenablingtechnologiesofquantumkeydistribution(QKD),standardizationactivitiesforQKDanditsnetworkingtechnologiesarepresented,followedbyimplicationsofQKDfor6G.Inparticular,twotypicalapplicationsscenariosareintroducedasdeployingquantumencryptionsystemanddeployingquantumcommunicationtrunklineinprovidingsecuritykeysforcustomersinthefieldsofInternetof
things,Internetofvehicles,smartenergy,smartgovernmentandsoon.
Chapter3.QuantumMachineLearning(QML)
Theprovisionsofamany-foldincreaseinthe6Gcommunicationsystemperformancealongsidewithrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQMLhasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Chapter3startswiththeconceptsofQMLonahigh
levelandthendiscussesmachinelearning(ML)basicparadigmsandtheirapplicationinsolving
5/33
problemacrossdifferentlayersofincommunicationsystems.Followedbypreliminaryknowledgesofquantumtools,Chapter3presentsexamplestogetinsightintotheresearchofQML.Consequently,QMLforcommunicationsystemscanbeobtainedbyMLfor
communicationsystembeingsynergywithquantumspeedup.
6/33
2QuantumSecureCommunication
2.1EnablingTechnologiesforQuantumSecureCommunication
2.1.1OverallPicture
Quantumsecurecommunicationmeanscombingthesecretkeygeneratedfromquantumkeydistribution(QKD)devicewithexistingsymmetricencryptor.Thedistributionprocessofthe
secretkeyisguaranteedbylawofquantummechanics.
Figure2.1Quantumsecurecommunication,asystemview
2.1.2TypesofQKD
ThetypesofQKDcanbecategorizedbythebehavioroftransmitterandreceiver,alsotheusageofphysicaldegreeoffreedom.Basedonthebehavioroftransmitterandreceiver,theQKDtypesareprepare-and-measure,twotransmitterstoonecommonreceiver(Measurement-device-independent(MDI)QKD,twin-field(TF)QKD),onecommon
entanglement-basedtransmittertotworeceivers(EntanglementbasedQKD),showninFigure2.2.
7/33
Figure2.2TypesofQKDintermsofthebehaviorofTxandRx
Theprepare-and-measurementQKDismostcommerciallymaturedoneanditcanbefurther
dividedintotwotypes:DV-QKDandCV-QKD,asshowninTable2-1.
Table2-1DV-QKDandCV-QKD,acomparison
DiscreteVariableQKD(DV-QKD)
ContinuousVariableQKD(CV-QKD)
?MaximumBaudrateat1.25Ghzfor
product
?MaximumBaudrateat10Ghzrecord
?Basedonsinglephotondetection
?Degreeoffreedom:polarization,timebin+phase,frequency
?Darkfiberpreferred,goodathighlosschannel
?Co-existencewithdatacommunicationpossible,lowtolerance.
?Relativelysimplepost-processing
?RecordfromUniv.Geneva:6.5bps@69.3dB
?MaximumBaudratenomorethan
100Mhzforproduct
?MaximumBaudratearound1Ghzrecord
?Basedoncoherentdetection
?Degreeoffreedom:In-phasecomponentandquadratureofEMfield
?Darkfiberisnotamust,goodatlowlosschannel
?Co-existencewithdatacommunicationpossible,hightolerance
?Complexpost-processing
?RecordfromBUPT&PKU:6.2bps@32.45dB
8/33
Phys.Rev.Lett.121,190502(2018)
Phys.Rev.Lett.125,010502(2020)
2.1.3TheNeededOptoelectronicComponentsofQKDandtheLow-Cost
Implementation
InFigure2.3,ThethreetypicalQKDsystemsusingphoton’sphysicaldegreeoffreedomarelisted:DV-QKDPolarization,DV-QKDTime-Phase,CV-QKDTransmittedLocalOscillator(TLO).ThesourceofhighcostcomesfromtheusageofLithiumniobatemodulator,electricpolarizationcontroller,fiber-basedAsymmetricMZIandsinglephotondetector.ThankstotherapidprogressofsiliconphotonicchipandIII-Vmaterialphotonicchipdevelopmentrecentyears,theQKDcanbenefitfromlow-costdevice.InFigure2.4,anexampleisshownhowthetraditionwayofmodulatingtheintensityandpolarizationofthequantumsignalcarriercanbeshrinkintoa
smalldevice.
Figure2.3CostissuewithQKDsystem
9/33
Figure2.4ShrinkthesizeoftraditioncomponentintoasmalldeviceforQKD
WithcompactsiliconphotonicschipandIII-Vcomponents(Figure2.5)andapplication-specificintegratedcircuit(ASICs),thefulloptoelectronicfunctionscanbepackagedintoastandardCform-factorpluggable(CFP)sizemodulethatiswidelyusedintraditionalopticalcommunicationindustry,whichimpliesstandardandcost-effectiveQKDTxmoduleandQKDRxmodulearefeasibleinthenearfuture.ThentheQKDfunctionscanberealizedviaCFPQKDmodulewithon-boardcomputationelectronics,thiswillbenefittheimplementationof
quantumsecurecommunicationsystemintermsofsize,costandflexibility(Figure2.6).
Figure2.5CompactIII-Vmaterialbasedsinglephotondetector
10/33
Figure2.6ThefutureofstandardCFPQKDmodule
2.2StandardizationActivitiesforQKDN
QKDanditsnetworkingtechnologieshaveattractedalotofinterestinmultipleSDOs,e.g.,ISO,IEC,ITU,IEEE,IETF,ETSI,asshownin2.7.ThestatusofQuantumKeyDistributionNetworks(QKDN)standardizationindifferentSDOswillbebrieflyreviewedinthefollowing
sub-clauses.
11/33
Figure2.7QKDNstandardizationtimeline
2.2.1ITU-T
ITU-TisthefirstSDOtostandardizeQKDasanetworksince2018.Atthetimeofthisreport’spublication,ITU-TStudyGroups13and17hadcumulativelyinitiated18workitemson
thenetworkandsecurityandaspectsofQKDnetworks,respectively.
ITU-TStudyGroup11
Atthetimeofthisreport’spublication,SG11hadinitiated1workitemsonQKDNforstudy,
aslistedinTable2-2.
Table2-2:QKDrelatedworkitemsinITU-TSG11
Q
Reference
Title
Type
Status
Q2/11
Q.QKDN_profr
Quantumkeydistributionnetworks–Protocol
framework
Recommendation
Under
development
ITU-TStudyGroup13
Atthetimeofthisreport’spublication,SG13hadadopted5standardsonQKDN,including
12/33
theQKDNoverview(Y.3800),functionalrequirements(Y.3801),functionalarchitecture(Y.3802),keymanagement(Y.3803),controlandmanagement(Y.3804)andinitiated17work
itemsonQKDNforstudy,aslistedinTable2-3.
Table2-3:QKDrelatedworkitemsinITU-TSG13
Q
Reference
Title
Type
Status
Q16/13
Y.3800
Overviewon
networkssupportingquantumkey
distribution
Recommendation
Published
(2019-11)
Q16/13
Y.3801
Functional
requirementsfor
quantumkey
distributionnetwork
Recommendation
Published
(2020-07)
Q16/13
Y.3802
Quantumkey
distributionnetworks
-Functional
architecture
Recommendation
Published
(2021-04)
Q16/13
Y.3803
Quantumkey
distributionnetworks
-Keymanagement
Recommendation
Published
(2021-03)
Q16/13
Y.3804
QuantumKey
Distribution
Networks-Control
andManagement
Recommendation
Published
(2021-01)
Q16/13
Y.3805
QuantumKey
Distribution
Networks-SoftwareDefinedNetworkingControl
Recommendation
Under
development
Q6/13
Y.3806
Requirementsfor
QoSAssuranceof
theQuantumKey
DistributionNetwork
Recommendation
Under
development
Q16/13
Y.Sup70
ITU-TY.3800-series
-Quantumkey
distributionnetworks
Supplement
Published
(2021-09)
13/33
Q
Reference
Title
Type
Status
-Applicationsof
machinelearning
Q16/13
Y.QKDN_BM
QuantumKey
Distribution
Networks-Business
role-basedmodels
Recommendation
Under
development
Q16/13
Y.QKDN_frint
Frameworkfor
integrationofQKDNandsecurestorage
network
Recommendation
Under
development
Q16/13
Y.QKDN-iwfr
Quantumkey
distributionnetworks
-interworking
framework
Recommendation
Under
development
Q16/13
Y.QKDN-ml-fra
QuantumKey
Distribution
Networks-
Functional
requirementsand
architecturefor
machinelearning
Recommendation
Under
development
Q6/13
Y.QKDN-qos-fa
Functional
architectureofQoSassurancefor
quantumkey
distributionnetworks
Recommendation
Under
development
Q6/13
Y.QKDN-qos-gen
GeneralAspectsofQoS(Qualityof
Service)onthe
QuantumKey
DistributionNetwork
Recommendation
Under
development
Q6/13
Y.QKDN-qos-ml-req
Requirementsof
machinelearning
basedQoSAssuranceforquantumkey
distributionnetworks
Recommendation
Under
development
Q16/13
Y.QKDN-rsfr
Quantumkey
Recommendation
Under
14/33
Q
Reference
Title
Type
Status
distributionnetworks
-resilience
framework
development
Q16/13
Y.supp.QKDN-roadmap
Standardization
roadmaponQuantumKeyDistribution
Networks
Supplement
Under
development
ThestructureofworkonQKDNstandardizationinSG13isillustratedinFigure2.8.
Figure2.8:QKDNstandardizationworkitemsinSG13
ITU-TStudyGroup17
SG17establishedanewQuestion,Q15/17,Securityfor/byemergingtechnologiesincludingquantum-basedsecurity,approvedbyTSAG’sSeptember2020meeting.TheQ15/17termsof
referenceareavailableat[1].
Atthetimeofthisreport’spublication,SG17hadadopted3standardsonQKDNandQRNG,
includingQKDNsecurityframework(X.1710),keycombinationandconfidentialkeysupply
15/33
(X.1714)andQRNGarchitecture(X.1702),andinitiated10workitemsonQKDNforstudy,as
listedinTable2-4.
Table2-4:QKDrelatedworkitemsinITU-TSG17
Reference
Title
Type
Status
X.1702
Quantumnoiserandomnumbergeneratorarchitecture
Recommendation
Published
(2019-11)
X.1710
Securityframeworkforquantumkeydistributionnetworks
Recommendation
Published
(2020-10)
X.1714
Keycombinationandconfidentialkeysupplyforquantumkey
distributionnetworks
Recommendation
Published
(2020-10)
XSTR-SEC-QKD
Securityconsiderationsforquantumkeydistributionnetwork
TechnicalReport
Published
(2020-03)
X.1712
SecurityrequirementsandmeasuresforQKDnetworks-key
management
Recommendation
Under
development
X.sec_QKDN_AA
Authenticationandauthorizationin
QKDNusingquantumsafe
cryptography
Recommendation
Under
development
X.sec_QKDN_CM
Securityrequirementsandmeasuresforquantumkeydistribution
networks-controlandmanagement
Recommendation
Under
development
X.sec_QKDN_intrq
Securityrequirementsfor
integrationofQKDNandsecurenetworkinfrastructures
Recommendation
Under
development
X.sec_QKDN_tn
SecurityrequirementsforQuantumKeyDistributionNetworks-trustednode
Recommendation
Under
development
TR.hybsec-qkdn
TechnicalReport:Overviewofhybridsecurityapproaches
applicabletoQKD
TechnicalReport
Under
development
ThestructureofworkonQKDNstandardizationinSG17isillustratedinFigure2.9.
16/33
Figure2.9:QKDNstandardizationworkitemsinSG17
2.2.2ETSIISG-QKD
ETSIinitiatedtheindustryspecificationgroup(ISG)onQKDin2008.ETSIISG-QKDhaspublishedninespecificationsonQKDuntil2019andhaveseveralworkitemsongoingaslistedinTable2-5.ThepreviousworkmainlyfocusedonQKDlink-levelissues,includingQKDopticalcomponents,modules,internalandapplicationinterfaces,practicalsecurity,etc.NotethatETSIhasalsoinitiatedthestudyofQKDnetworkarchitecturesrecentlyandthespecificationofQKD
securitycertificationbasedoncommoncriteria.
Table2-5:QKDrelatedworkitemsinETSI
Reference
Title
Status
GSQKD002
QuantumKeyDistribution(QKD);UseCases
Published
(2010-06)
GRQKD003
QuantumKeyDistribution(QKD);ComponentsandInternalInterfaces
Published
(2018-03)
GSQKD004
QuantumKeyDistribution(QKD);ApplicationInterface
Published
(2010-12)
GSQKD005
QuantumKeyDistribution(QKD);SecurityProofs
NOTE–Revisioninprogress
Published
(2010-12)
GRQKD007
QuantumKeyDistribution(QKD);Vocabulary
Published
(2018-12)
17/33
Reference
Title
Status
NOTE–Revisioninprogress
GSQKD008
QuantumKeyDistribution(QKD);QKDModuleSecuritySpecification
Published
(2010-12)
GSQKD011
QuantumKeyDistribution(QKD);Componentcharacterization:
characterizingopticalcomponentsforQKDsystems
Published
(2016-05)
GSQKD012
QuantumKeyDistribution(QKD)DeviceandCommunicationChannelParameters
forQKDDeployment
Published
(2019-02)
GSQKD014
QuantumKeyDistribution(QKD);
ProtocolanddataformatofkeydeliveryAPItoApplications;
Published
(2019-02)
GSQKD015
QuantumKeyDistribution(QKD);
QuantumKeyDistributionControl
InterfaceforSoftwareDefinedNetworks
Published
(2021-03)
DGS/QKD-0010_ISTrojan
QuantumKeyDistribution(QKD);
Implementationsecurity:protection
againstTrojanhorseattacksinone-wayQKDsystems
Under
development
DGS/QKD-0013_TransModChar
QuantumKeyDistribution(QKD);
CharacterisationofOpticalOutputofQKDtransmittermodules
Under
development
DGS/QKD-016-PP
QuantumKeyDistribution(QKD);
CommonCriteriaProtectionProfilefor
QKD
Under
development
DGR/QKD-017NwkArch
QuantumKeyDistribution(QKD);Networkarchitectures
Under
development
DGS/QKD-018OrchIntSDN
QuantumKeyDistribution(QKD);OrchestrationInterfaceofSoftware
DefinedNetworks
Under
development
2.2.3ISO/IECJTC1/SC27
ISO/IECJTC1/SC27initiatedthestudyperiod"Securityrequirements,testandevaluation
18/33
methodsforquantumkeydistribution"in2017.In2019,thestudyperiodwascompleted,anda
newworkitemISO/IEC23837(Part1&2)wasestablishedaslistedinTable2-6.
Table2-6:QKDrelatedworksitemsinISO/IECJTC1
Reference
Title
Status
ISO/IEC
23837-1
Securityrequirements,testandevaluationmethodsforquantumkeydistributionPart1:requirements
Under
development
ISO/IEC
23837-2
Securityrequirements,testandevaluationmethodsforquantumkeydistributionPart2:testandevaluation
methods
Under
development
2.3Implicationsfor6G
2.3.1State-of-the-artofQKDin5G
In5Gera,theimportanceofcybersecurityinmobilecommunicationswillriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.SomemobileoperatorshaveappliedencryptiontechnologyusingQKDto5Gnetworks,forexample,inApril2021,SKTelecom(SKT)anditssubsidiaryIDQuantique(IDQ),aGeneva-basedleaderinquantum-safecryptography,havedevelopedaquantumvirtualprivatenetwork(VPN)basedontheQKD.VPNisasecuredcommunicationschannelimplementedovershared,publicnetworkstoconnectremoteusersandmachinestoaprivatenetwork.QKDisasecurecommunicationmethodthatimplementsacryptographicprotocolinvolvingcomponentsofquantummechanics[2].In6G,
withthedevelopmentoftechnology,itmaturesdaybyday.
Inordertoresistthepotentialimpactontheclassiccryptographysystem,256bitsalgorithmswillbeendorsedtoreplacethe128bitsalgorithms.In5G,the128bitsalgorithmsNRIntegrityAlgorithm(NIA)/NREncryptionAlgorithm(NEA)1/2/3areusedfortheAccessStratum(AS)andNon-AccessStratum(NAS)securityprotectionbasedonthesharedkey,meanwhilethe
corresponding256bitsalgorithmsarealreadyunderinvestigationin3GPPSA3andETSI
19/33
SecurityAlgorithmsGroupofExperts(SAGE).Thenew256bitsalgorithmswillprobablybeintroducedin6Gera.AES-256willbeoneofthecandidates,evenwithcurrentlyknownquantumalgorithmslikeGrover's,NationalInstituteofStandardsandTechnology(NIST)believesthatAES256keyswillstillbesafeforaverylongtimeandrecommendsthatcurrentapplicationscan
continuetouseAESwithkeysizes128,192,or256bits[3].
Forasymmetricalgorithms,e.g.,EllipticCurve-BasedCertificatelessSignaturesforIdentity-BasedEncryption(ECCSI),RSA,theyarewidelyusedin5GsystemandInternetservices.
NISThasinitiatedaprocesstosolicit,evaluate,andstandardizeoneormore
quantum-resistantpublic-keycryptographicalgorithms.Itisintendedthatthenewpublic-keycryptographystandardswillspecifyoneormoreadditionalunclassified,publiclydiscloseddigitalsignature,public-keyencryption,andkey-establishmentalgorithmsthatareavailableworldwide,andarecapableofprotectingsensitivegovernmentinformationwellintotheforeseeablefuture,includingaftertheadventofquantumcomputers.ItwasplannedtogetthedraftstandardsonPost-QuantumCryptography(PQC)availableat2022-2024.ThisisthemostcriticalissuetostandardizethemoststableandsecurePQCbeforedeployingthemintothe6G.Earlyadoptionofpostquantumalgorithmswouldbebothverycomplex,andyetresultinpotentiallyuncertain
securityguarantees.
2.3.2Integrationof6GandQITs
Thecompositionof6Gnetworkrequireshigh-precisiondatacapability,computingcapabilityandsecurity,whichcanbeenabledbyquantumtechnologiessuchasquantumprecision
measurement,quantumcomputingandquantumcommunication.
(1)Quantumcomputingwillhelp6Gmaximizespectrumutilizationandimproveresource
allocationefficiency.
Inthe6Gera,thewirelessindustrymayre-examinethetraditionalspectrumallocation
mechanismandfurtherevolvethedynamicspectrumsharingtechnology.Throughtheuseof
20/33
ArtificialIntelligence,Blockchainandothertechnologies,moreintelligentanddynamicspectrumallocation,controlandschedulingcanberealizedtomaximizespectrumutilization.Quantumcomputingwillachieveoptimalwirelessresourceallocationandcellplanningandimproveenergy
efficiencyandspectrumefficiency.
(2)Quantumprivatecommunicationtechnologyensuresnetworkdatasecurityand
supportsthedevelopmentofdigitaleconomy.
Traditionalcryptographybasedoncomputationalcomplexitywillfacethethreatofquantumcomputerattacksinthe6Gera.Enhancedcryptographysuchasquantumkeyandwirelessphysicallayerkeywillprovideastrongersecurityguaranteefor6G.Inthefuture,6Gnetworkswillrelyonlightweightaccessauthentication,quantumkey,blockchainandotheradvanced
securitytechnologiestoprovideactivedefensefornetworkinfrastructure.
2.3.3TypicalApplicationScenariosofQKD
Quantumencryptedcommunicationcanbeappliedtoprotectthedataacquisitionandprocessingsystemofinfrastructure,ensuringthesecurityofdatacommunication.Itcanbewidely
usedinfrontierfieldssuchasdigitaltwins,smartparks,blockchainsandsoon.
Takingthemanagementandschedulingofthesmartparkasanexample,collectandanalyzetheenvironmentalinformationoftheparkthroughsensingequipment(camera,radar),roadsideunitandpositioningreferencestation,andbuildabusinesssystembasedon'vehicle-road-human-cloudcollaboration’,whichcanrealizetheefficientandfastmanagementofpersonnel,materialsandequipmentinthepark.Thecollecteddataiscloselyrelatedtothemanagementabilityofthepark,anditsauthenticityandintegritycanbeprotectedbyquantumkey
distribution.
21/33
Figure2.10DataEncryptionofSmartParkBasedonQuantumSecuritySystem
DatatransmissionwiththequantumencryptionsystemisshownintheFigure2.10.Thequantumkeydistributionsystemprovideskeysforreliableauthenticationanddataencryptionofvideo,pictures,pointclouddata,trafficinformation,locationinformationandotherdataofthepark.Thequantumkeydistributionsystemcanalsochangethekeyaccordingtothespecificbusinessrequirements,realizingtheintelligentmanagementoftheparkandsecuredatatransmission.Inthefuture,thequantumencryptionsystemwillbeappliedtotheconstructionof
WinterOlympicsSmartParkandXiong'anNewArea.
Forexample,inXiong’anquantumcommunicationpilotasillustratedbyFigure2.11,aquantumcommunicationtrunklinebetweenBeijingandXiong’anwillbedeployed,anda
quantumkeydistributionplatformwillbeintroducedtoprovidesecuritykeysforcustomersinthe
22/33
fieldsofInternetofthings(IoT),Internetofvehicles(IoV),smartenergy,smartgovernmentandsoon.Thequantumkeydistributionplatformandtheserviceapplicationservercanbedeployedtogetherwithoutchangingtheoriginalnetworktopology,andtheencryptedbusinessisstill
transmittedintheoriginalservicechannels.
Figure2.11QuantumCommunicationPilotinXiong'an
23/33
3QuantumMachineLearning(QML)
Itishighlyexpectedthatthe6thgeneration(6G)communicationsystemswilllayafoundationofpervasivedigitization,ubiquitousconnectionandfullintelligence.Theprovisionsofamany-foldincreaseinthecommunicationsystemperformanceandrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQuantumMachineLearning(QML)hasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Inthefollowing,westartwiththeconceptsofQMLonahighlevelandthendiscussmachinelearning(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- N-Ethyl-4-methoxyamphetamine-hydrochloride-生命科學(xué)試劑-MCE-8599
- 2025年度商業(yè)門面使用權(quán)轉(zhuǎn)讓合同
- 2025年度電梯應(yīng)急救援預(yù)案制定與演練合同
- 2025年度解除租賃合同解除條件爭(zhēng)議調(diào)解協(xié)議書
- 施工現(xiàn)場(chǎng)安全風(fēng)險(xiǎn)管控制度
- 科技發(fā)展趨勢(shì)宇宙生命探索與地球應(yīng)用
- 個(gè)人房屋租賃給企業(yè)合同范例
- 兩子女離婚財(cái)產(chǎn)分割合同范本
- 2025屆畢業(yè)生就業(yè)實(shí)習(xí)合同協(xié)議
- 個(gè)人委托代理合同書樣本
- 后勤安全生產(chǎn)
- 項(xiàng)目重點(diǎn)難點(diǎn)分析及解決措施
- 挑戰(zhàn)杯-申報(bào)書范本
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)期末測(cè)試卷及答案共5套
- 電子商務(wù)視覺(jué)設(shè)計(jì)(第2版)完整全套教學(xué)課件
- 2024-2025學(xué)年人教版生物八年級(jí)上冊(cè)期末綜合測(cè)試卷
- 2025年九省聯(lián)考新高考 語(yǔ)文試卷(含答案解析)
- 第1課《春》公開課一等獎(jiǎng)創(chuàng)新教案設(shè)計(jì) 統(tǒng)編版語(yǔ)文七年級(jí)上冊(cè)
- 全過(guò)程工程咨詢投標(biāo)方案(技術(shù)方案)
- 心理健康教育學(xué)情分析報(bào)告
- 安宮牛黃丸的培訓(xùn)
評(píng)論
0/150
提交評(píng)論