面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第1頁(yè)
面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第2頁(yè)
面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第3頁(yè)
面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第4頁(yè)
面向6G時(shí)代的先進(jìn)技術(shù)的初步研究:QITs 2021(英文)_第5頁(yè)
已閱讀5頁(yè),還剩55頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PreliminaryStudyofAdvancedTechnologies

towards6GEra:QITs

2021

1/33

PreliminaryStudyofAdvancedTechnologies

towards6GEra:QITs

2021

2/33

ExecutiveSummary

Withthelarge-scalecommercializationof5Gin2021,theglobalindustryhaswitnessedastartingofexplorationandresearchonthe6thgeneration(6G)communicationsystems.6Gwillbuildanewtypeofnetworkthatisintelligentlyandefficientlyinterconnectedbetweenhumans,machineandthings.Onthebasisofgreatlyimprovingthenetworkcapability,ithasnewfunctionssuchasendogenousintelligence,multi-dimensionalperception,digitaltwin,endogenousnetworksecurityandsoon.Withthein-depthresearchon6Gnetworkandkeytechnologies,itsintegrationandapplicationwithQuantumInformationTechnologies(QITs)willbecomethefocusinthe

future.

In6Gera,theimportanceofcybersecurityinmobilecommunicationsisexpectedtoriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.Inthefirstpart,thiswhitepapergivesanoverviewofQuantumSecureCommunication.Startingwithenablingtechnologiesofquantumkeydistribution(QKD),standardizationactivitiesforQKDanditsnetworkingtechnologiesarepresented,followedbyimplicationsofQKDfor6G.Inparticular,twotypicalapplicationsscenariosareintroduced.OneisthequantumencryptionsystemthatwillbeappliedtotheconstructionofWinterOlympicsSmartParkandXiong'anNewArea.TheotherisinXiong’anquantumcommunicationpilot,whereaquantumcommunicationtrunklinebetweenBeijingandXiong’anwillbedeployed,andaquantumkeydistributionplatformwillbeintroducedtoprovidesecuritykeysforcustomersinthefieldsofInternetofthings,Internetof

vehicles,smartenergy,smartgovernmentandsoon.

Theprovisionsofamany-foldincreaseinthe6Gcommunicationsystemperformancealongsidewithrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQuantumMachineLearning(QML)hasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Inthesecondpart,followedbypreliminaryknowledgesofmachinelearning(ML)basicparadigmsandtheirapplicationinsolvingproblemacrossdifferentlayersofincommunicationsystems,andquantumtools,this

whitepaperpresentsexamplestogetinsightintotheresearchofQML.

3/33

TableofContents

ExecutiveSummary

2

1Introduction

4

2QuantumSecureCommunication

6

2.1EnablingTechnologiesforQuantumSecureCommunication

6

2.1.1OverallPicture

6

2.1.2TypesofQKD

6

2.1.3TheNeededOptoelectronicComponentsofQKDandtheLow-Cost

Implementation

8

2.2StandardizationActivitiesforQKDN

1

0

2.2.1ITU-T

1

1

ITU-TStudyGroup11

1

1

ITU-TStudyGroup13

1

1

ITU-TStudyGroup17

1

4

2.2.2ETSIISG-QKD

1

6

2.2.3ISO/IECJTC1/SC27

1

7

2.3Implicationsfor6G

1

8

2.3.1State-of-the-artofQKDin5G

1

8

2.3.2Integrationof6GandQITs

1

9

2.3.3TypicalApplicationScenariosofQKD

2

0

3QuantumMachineLearning(QML)

2

3

3.1MachineLearningforCommunicationSystems

2

4

3.2QuantumTools

2

6

3.3QMLforCommunicationSystems

2

7

3.3.1Quantum-enhancedMachineLearning

2

7

3.3.2MachineLearningofQuantumSystems

2

8

3.3.3QuantumLearningTheory

2

8

4Reference

3

0

Acknowledgement

3

2

Abbreviation

3

2

4/33

1Introduction

Thescopeofthisannuallyrevisedwhitepaperistointroducequantuminformationtechnologies(QITs)withtheaimoftakingadvantagesoftheirpowerfulinformationprocessingcapabilitiestofulfilstringentdemandsofcommunicationandcomputingenvisagedby6Gsystems.Ourpreviousversionin2020presenttheoverviewofQITsfromtheperspectivesofQITs&QuantumInternetandQTIsforClassicalSignalProcessing,respectively.Theversionof2021willfurtherintroducefromtwobenefitsexpectedfromQITstocommunicationsystems,i.e.,secure

communicationandenhancedinformationprocessingcapability.

Chapter2.QuantumSecureCommunication

In6Gera,theimportanceofcybersecurityinmobilecommunicationsisexpectedtoriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.Chapter2givesanoverviewofQuantumSecureCommunication.Startingwithenablingtechnologiesofquantumkeydistribution(QKD),standardizationactivitiesforQKDanditsnetworkingtechnologiesarepresented,followedbyimplicationsofQKDfor6G.Inparticular,twotypicalapplicationsscenariosareintroducedasdeployingquantumencryptionsystemanddeployingquantumcommunicationtrunklineinprovidingsecuritykeysforcustomersinthefieldsofInternetof

things,Internetofvehicles,smartenergy,smartgovernmentandsoon.

Chapter3.QuantumMachineLearning(QML)

Theprovisionsofamany-foldincreaseinthe6Gcommunicationsystemperformancealongsidewithrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQMLhasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Chapter3startswiththeconceptsofQMLonahigh

levelandthendiscussesmachinelearning(ML)basicparadigmsandtheirapplicationinsolving

5/33

problemacrossdifferentlayersofincommunicationsystems.Followedbypreliminaryknowledgesofquantumtools,Chapter3presentsexamplestogetinsightintotheresearchofQML.Consequently,QMLforcommunicationsystemscanbeobtainedbyMLfor

communicationsystembeingsynergywithquantumspeedup.

6/33

2QuantumSecureCommunication

2.1EnablingTechnologiesforQuantumSecureCommunication

2.1.1OverallPicture

Quantumsecurecommunicationmeanscombingthesecretkeygeneratedfromquantumkeydistribution(QKD)devicewithexistingsymmetricencryptor.Thedistributionprocessofthe

secretkeyisguaranteedbylawofquantummechanics.

Figure2.1Quantumsecurecommunication,asystemview

2.1.2TypesofQKD

ThetypesofQKDcanbecategorizedbythebehavioroftransmitterandreceiver,alsotheusageofphysicaldegreeoffreedom.Basedonthebehavioroftransmitterandreceiver,theQKDtypesareprepare-and-measure,twotransmitterstoonecommonreceiver(Measurement-device-independent(MDI)QKD,twin-field(TF)QKD),onecommon

entanglement-basedtransmittertotworeceivers(EntanglementbasedQKD),showninFigure2.2.

7/33

Figure2.2TypesofQKDintermsofthebehaviorofTxandRx

Theprepare-and-measurementQKDismostcommerciallymaturedoneanditcanbefurther

dividedintotwotypes:DV-QKDandCV-QKD,asshowninTable2-1.

Table2-1DV-QKDandCV-QKD,acomparison

DiscreteVariableQKD(DV-QKD)

ContinuousVariableQKD(CV-QKD)

?MaximumBaudrateat1.25Ghzfor

product

?MaximumBaudrateat10Ghzrecord

?Basedonsinglephotondetection

?Degreeoffreedom:polarization,timebin+phase,frequency

?Darkfiberpreferred,goodathighlosschannel

?Co-existencewithdatacommunicationpossible,lowtolerance.

?Relativelysimplepost-processing

?RecordfromUniv.Geneva:6.5bps@69.3dB

?MaximumBaudratenomorethan

100Mhzforproduct

?MaximumBaudratearound1Ghzrecord

?Basedoncoherentdetection

?Degreeoffreedom:In-phasecomponentandquadratureofEMfield

?Darkfiberisnotamust,goodatlowlosschannel

?Co-existencewithdatacommunicationpossible,hightolerance

?Complexpost-processing

?RecordfromBUPT&PKU:6.2bps@32.45dB

8/33

Phys.Rev.Lett.121,190502(2018)

Phys.Rev.Lett.125,010502(2020)

2.1.3TheNeededOptoelectronicComponentsofQKDandtheLow-Cost

Implementation

InFigure2.3,ThethreetypicalQKDsystemsusingphoton’sphysicaldegreeoffreedomarelisted:DV-QKDPolarization,DV-QKDTime-Phase,CV-QKDTransmittedLocalOscillator(TLO).ThesourceofhighcostcomesfromtheusageofLithiumniobatemodulator,electricpolarizationcontroller,fiber-basedAsymmetricMZIandsinglephotondetector.ThankstotherapidprogressofsiliconphotonicchipandIII-Vmaterialphotonicchipdevelopmentrecentyears,theQKDcanbenefitfromlow-costdevice.InFigure2.4,anexampleisshownhowthetraditionwayofmodulatingtheintensityandpolarizationofthequantumsignalcarriercanbeshrinkintoa

smalldevice.

Figure2.3CostissuewithQKDsystem

9/33

Figure2.4ShrinkthesizeoftraditioncomponentintoasmalldeviceforQKD

WithcompactsiliconphotonicschipandIII-Vcomponents(Figure2.5)andapplication-specificintegratedcircuit(ASICs),thefulloptoelectronicfunctionscanbepackagedintoastandardCform-factorpluggable(CFP)sizemodulethatiswidelyusedintraditionalopticalcommunicationindustry,whichimpliesstandardandcost-effectiveQKDTxmoduleandQKDRxmodulearefeasibleinthenearfuture.ThentheQKDfunctionscanberealizedviaCFPQKDmodulewithon-boardcomputationelectronics,thiswillbenefittheimplementationof

quantumsecurecommunicationsystemintermsofsize,costandflexibility(Figure2.6).

Figure2.5CompactIII-Vmaterialbasedsinglephotondetector

10/33

Figure2.6ThefutureofstandardCFPQKDmodule

2.2StandardizationActivitiesforQKDN

QKDanditsnetworkingtechnologieshaveattractedalotofinterestinmultipleSDOs,e.g.,ISO,IEC,ITU,IEEE,IETF,ETSI,asshownin2.7.ThestatusofQuantumKeyDistributionNetworks(QKDN)standardizationindifferentSDOswillbebrieflyreviewedinthefollowing

sub-clauses.

11/33

Figure2.7QKDNstandardizationtimeline

2.2.1ITU-T

ITU-TisthefirstSDOtostandardizeQKDasanetworksince2018.Atthetimeofthisreport’spublication,ITU-TStudyGroups13and17hadcumulativelyinitiated18workitemson

thenetworkandsecurityandaspectsofQKDnetworks,respectively.

ITU-TStudyGroup11

Atthetimeofthisreport’spublication,SG11hadinitiated1workitemsonQKDNforstudy,

aslistedinTable2-2.

Table2-2:QKDrelatedworkitemsinITU-TSG11

Q

Reference

Title

Type

Status

Q2/11

Q.QKDN_profr

Quantumkeydistributionnetworks–Protocol

framework

Recommendation

Under

development

ITU-TStudyGroup13

Atthetimeofthisreport’spublication,SG13hadadopted5standardsonQKDN,including

12/33

theQKDNoverview(Y.3800),functionalrequirements(Y.3801),functionalarchitecture(Y.3802),keymanagement(Y.3803),controlandmanagement(Y.3804)andinitiated17work

itemsonQKDNforstudy,aslistedinTable2-3.

Table2-3:QKDrelatedworkitemsinITU-TSG13

Q

Reference

Title

Type

Status

Q16/13

Y.3800

Overviewon

networkssupportingquantumkey

distribution

Recommendation

Published

(2019-11)

Q16/13

Y.3801

Functional

requirementsfor

quantumkey

distributionnetwork

Recommendation

Published

(2020-07)

Q16/13

Y.3802

Quantumkey

distributionnetworks

-Functional

architecture

Recommendation

Published

(2021-04)

Q16/13

Y.3803

Quantumkey

distributionnetworks

-Keymanagement

Recommendation

Published

(2021-03)

Q16/13

Y.3804

QuantumKey

Distribution

Networks-Control

andManagement

Recommendation

Published

(2021-01)

Q16/13

Y.3805

QuantumKey

Distribution

Networks-SoftwareDefinedNetworkingControl

Recommendation

Under

development

Q6/13

Y.3806

Requirementsfor

QoSAssuranceof

theQuantumKey

DistributionNetwork

Recommendation

Under

development

Q16/13

Y.Sup70

ITU-TY.3800-series

-Quantumkey

distributionnetworks

Supplement

Published

(2021-09)

13/33

Q

Reference

Title

Type

Status

-Applicationsof

machinelearning

Q16/13

Y.QKDN_BM

QuantumKey

Distribution

Networks-Business

role-basedmodels

Recommendation

Under

development

Q16/13

Y.QKDN_frint

Frameworkfor

integrationofQKDNandsecurestorage

network

Recommendation

Under

development

Q16/13

Y.QKDN-iwfr

Quantumkey

distributionnetworks

-interworking

framework

Recommendation

Under

development

Q16/13

Y.QKDN-ml-fra

QuantumKey

Distribution

Networks-

Functional

requirementsand

architecturefor

machinelearning

Recommendation

Under

development

Q6/13

Y.QKDN-qos-fa

Functional

architectureofQoSassurancefor

quantumkey

distributionnetworks

Recommendation

Under

development

Q6/13

Y.QKDN-qos-gen

GeneralAspectsofQoS(Qualityof

Service)onthe

QuantumKey

DistributionNetwork

Recommendation

Under

development

Q6/13

Y.QKDN-qos-ml-req

Requirementsof

machinelearning

basedQoSAssuranceforquantumkey

distributionnetworks

Recommendation

Under

development

Q16/13

Y.QKDN-rsfr

Quantumkey

Recommendation

Under

14/33

Q

Reference

Title

Type

Status

distributionnetworks

-resilience

framework

development

Q16/13

Y.supp.QKDN-roadmap

Standardization

roadmaponQuantumKeyDistribution

Networks

Supplement

Under

development

ThestructureofworkonQKDNstandardizationinSG13isillustratedinFigure2.8.

Figure2.8:QKDNstandardizationworkitemsinSG13

ITU-TStudyGroup17

SG17establishedanewQuestion,Q15/17,Securityfor/byemergingtechnologiesincludingquantum-basedsecurity,approvedbyTSAG’sSeptember2020meeting.TheQ15/17termsof

referenceareavailableat[1].

Atthetimeofthisreport’spublication,SG17hadadopted3standardsonQKDNandQRNG,

includingQKDNsecurityframework(X.1710),keycombinationandconfidentialkeysupply

15/33

(X.1714)andQRNGarchitecture(X.1702),andinitiated10workitemsonQKDNforstudy,as

listedinTable2-4.

Table2-4:QKDrelatedworkitemsinITU-TSG17

Reference

Title

Type

Status

X.1702

Quantumnoiserandomnumbergeneratorarchitecture

Recommendation

Published

(2019-11)

X.1710

Securityframeworkforquantumkeydistributionnetworks

Recommendation

Published

(2020-10)

X.1714

Keycombinationandconfidentialkeysupplyforquantumkey

distributionnetworks

Recommendation

Published

(2020-10)

XSTR-SEC-QKD

Securityconsiderationsforquantumkeydistributionnetwork

TechnicalReport

Published

(2020-03)

X.1712

SecurityrequirementsandmeasuresforQKDnetworks-key

management

Recommendation

Under

development

X.sec_QKDN_AA

Authenticationandauthorizationin

QKDNusingquantumsafe

cryptography

Recommendation

Under

development

X.sec_QKDN_CM

Securityrequirementsandmeasuresforquantumkeydistribution

networks-controlandmanagement

Recommendation

Under

development

X.sec_QKDN_intrq

Securityrequirementsfor

integrationofQKDNandsecurenetworkinfrastructures

Recommendation

Under

development

X.sec_QKDN_tn

SecurityrequirementsforQuantumKeyDistributionNetworks-trustednode

Recommendation

Under

development

TR.hybsec-qkdn

TechnicalReport:Overviewofhybridsecurityapproaches

applicabletoQKD

TechnicalReport

Under

development

ThestructureofworkonQKDNstandardizationinSG17isillustratedinFigure2.9.

16/33

Figure2.9:QKDNstandardizationworkitemsinSG17

2.2.2ETSIISG-QKD

ETSIinitiatedtheindustryspecificationgroup(ISG)onQKDin2008.ETSIISG-QKDhaspublishedninespecificationsonQKDuntil2019andhaveseveralworkitemsongoingaslistedinTable2-5.ThepreviousworkmainlyfocusedonQKDlink-levelissues,includingQKDopticalcomponents,modules,internalandapplicationinterfaces,practicalsecurity,etc.NotethatETSIhasalsoinitiatedthestudyofQKDnetworkarchitecturesrecentlyandthespecificationofQKD

securitycertificationbasedoncommoncriteria.

Table2-5:QKDrelatedworkitemsinETSI

Reference

Title

Status

GSQKD002

QuantumKeyDistribution(QKD);UseCases

Published

(2010-06)

GRQKD003

QuantumKeyDistribution(QKD);ComponentsandInternalInterfaces

Published

(2018-03)

GSQKD004

QuantumKeyDistribution(QKD);ApplicationInterface

Published

(2010-12)

GSQKD005

QuantumKeyDistribution(QKD);SecurityProofs

NOTE–Revisioninprogress

Published

(2010-12)

GRQKD007

QuantumKeyDistribution(QKD);Vocabulary

Published

(2018-12)

17/33

Reference

Title

Status

NOTE–Revisioninprogress

GSQKD008

QuantumKeyDistribution(QKD);QKDModuleSecuritySpecification

Published

(2010-12)

GSQKD011

QuantumKeyDistribution(QKD);Componentcharacterization:

characterizingopticalcomponentsforQKDsystems

Published

(2016-05)

GSQKD012

QuantumKeyDistribution(QKD)DeviceandCommunicationChannelParameters

forQKDDeployment

Published

(2019-02)

GSQKD014

QuantumKeyDistribution(QKD);

ProtocolanddataformatofkeydeliveryAPItoApplications;

Published

(2019-02)

GSQKD015

QuantumKeyDistribution(QKD);

QuantumKeyDistributionControl

InterfaceforSoftwareDefinedNetworks

Published

(2021-03)

DGS/QKD-0010_ISTrojan

QuantumKeyDistribution(QKD);

Implementationsecurity:protection

againstTrojanhorseattacksinone-wayQKDsystems

Under

development

DGS/QKD-0013_TransModChar

QuantumKeyDistribution(QKD);

CharacterisationofOpticalOutputofQKDtransmittermodules

Under

development

DGS/QKD-016-PP

QuantumKeyDistribution(QKD);

CommonCriteriaProtectionProfilefor

QKD

Under

development

DGR/QKD-017NwkArch

QuantumKeyDistribution(QKD);Networkarchitectures

Under

development

DGS/QKD-018OrchIntSDN

QuantumKeyDistribution(QKD);OrchestrationInterfaceofSoftware

DefinedNetworks

Under

development

2.2.3ISO/IECJTC1/SC27

ISO/IECJTC1/SC27initiatedthestudyperiod"Securityrequirements,testandevaluation

18/33

methodsforquantumkeydistribution"in2017.In2019,thestudyperiodwascompleted,anda

newworkitemISO/IEC23837(Part1&2)wasestablishedaslistedinTable2-6.

Table2-6:QKDrelatedworksitemsinISO/IECJTC1

Reference

Title

Status

ISO/IEC

23837-1

Securityrequirements,testandevaluationmethodsforquantumkeydistributionPart1:requirements

Under

development

ISO/IEC

23837-2

Securityrequirements,testandevaluationmethodsforquantumkeydistributionPart2:testandevaluation

methods

Under

development

2.3Implicationsfor6G

2.3.1State-of-the-artofQKDin5G

In5Gera,theimportanceofcybersecurityinmobilecommunicationswillriseexponentially.Quantumcryptographyhasemergedasapotentialsolutionforsafeguardingcriticalinformationbecauseitisimpossibletocopydataencodedinaquantumstate.SomemobileoperatorshaveappliedencryptiontechnologyusingQKDto5Gnetworks,forexample,inApril2021,SKTelecom(SKT)anditssubsidiaryIDQuantique(IDQ),aGeneva-basedleaderinquantum-safecryptography,havedevelopedaquantumvirtualprivatenetwork(VPN)basedontheQKD.VPNisasecuredcommunicationschannelimplementedovershared,publicnetworkstoconnectremoteusersandmachinestoaprivatenetwork.QKDisasecurecommunicationmethodthatimplementsacryptographicprotocolinvolvingcomponentsofquantummechanics[2].In6G,

withthedevelopmentoftechnology,itmaturesdaybyday.

Inordertoresistthepotentialimpactontheclassiccryptographysystem,256bitsalgorithmswillbeendorsedtoreplacethe128bitsalgorithms.In5G,the128bitsalgorithmsNRIntegrityAlgorithm(NIA)/NREncryptionAlgorithm(NEA)1/2/3areusedfortheAccessStratum(AS)andNon-AccessStratum(NAS)securityprotectionbasedonthesharedkey,meanwhilethe

corresponding256bitsalgorithmsarealreadyunderinvestigationin3GPPSA3andETSI

19/33

SecurityAlgorithmsGroupofExperts(SAGE).Thenew256bitsalgorithmswillprobablybeintroducedin6Gera.AES-256willbeoneofthecandidates,evenwithcurrentlyknownquantumalgorithmslikeGrover's,NationalInstituteofStandardsandTechnology(NIST)believesthatAES256keyswillstillbesafeforaverylongtimeandrecommendsthatcurrentapplicationscan

continuetouseAESwithkeysizes128,192,or256bits[3].

Forasymmetricalgorithms,e.g.,EllipticCurve-BasedCertificatelessSignaturesforIdentity-BasedEncryption(ECCSI),RSA,theyarewidelyusedin5GsystemandInternetservices.

NISThasinitiatedaprocesstosolicit,evaluate,andstandardizeoneormore

quantum-resistantpublic-keycryptographicalgorithms.Itisintendedthatthenewpublic-keycryptographystandardswillspecifyoneormoreadditionalunclassified,publiclydiscloseddigitalsignature,public-keyencryption,andkey-establishmentalgorithmsthatareavailableworldwide,andarecapableofprotectingsensitivegovernmentinformationwellintotheforeseeablefuture,includingaftertheadventofquantumcomputers.ItwasplannedtogetthedraftstandardsonPost-QuantumCryptography(PQC)availableat2022-2024.ThisisthemostcriticalissuetostandardizethemoststableandsecurePQCbeforedeployingthemintothe6G.Earlyadoptionofpostquantumalgorithmswouldbebothverycomplex,andyetresultinpotentiallyuncertain

securityguarantees.

2.3.2Integrationof6GandQITs

Thecompositionof6Gnetworkrequireshigh-precisiondatacapability,computingcapabilityandsecurity,whichcanbeenabledbyquantumtechnologiessuchasquantumprecision

measurement,quantumcomputingandquantumcommunication.

(1)Quantumcomputingwillhelp6Gmaximizespectrumutilizationandimproveresource

allocationefficiency.

Inthe6Gera,thewirelessindustrymayre-examinethetraditionalspectrumallocation

mechanismandfurtherevolvethedynamicspectrumsharingtechnology.Throughtheuseof

20/33

ArtificialIntelligence,Blockchainandothertechnologies,moreintelligentanddynamicspectrumallocation,controlandschedulingcanberealizedtomaximizespectrumutilization.Quantumcomputingwillachieveoptimalwirelessresourceallocationandcellplanningandimproveenergy

efficiencyandspectrumefficiency.

(2)Quantumprivatecommunicationtechnologyensuresnetworkdatasecurityand

supportsthedevelopmentofdigitaleconomy.

Traditionalcryptographybasedoncomputationalcomplexitywillfacethethreatofquantumcomputerattacksinthe6Gera.Enhancedcryptographysuchasquantumkeyandwirelessphysicallayerkeywillprovideastrongersecurityguaranteefor6G.Inthefuture,6Gnetworkswillrelyonlightweightaccessauthentication,quantumkey,blockchainandotheradvanced

securitytechnologiestoprovideactivedefensefornetworkinfrastructure.

2.3.3TypicalApplicationScenariosofQKD

Quantumencryptedcommunicationcanbeappliedtoprotectthedataacquisitionandprocessingsystemofinfrastructure,ensuringthesecurityofdatacommunication.Itcanbewidely

usedinfrontierfieldssuchasdigitaltwins,smartparks,blockchainsandsoon.

Takingthemanagementandschedulingofthesmartparkasanexample,collectandanalyzetheenvironmentalinformationoftheparkthroughsensingequipment(camera,radar),roadsideunitandpositioningreferencestation,andbuildabusinesssystembasedon'vehicle-road-human-cloudcollaboration’,whichcanrealizetheefficientandfastmanagementofpersonnel,materialsandequipmentinthepark.Thecollecteddataiscloselyrelatedtothemanagementabilityofthepark,anditsauthenticityandintegritycanbeprotectedbyquantumkey

distribution.

21/33

Figure2.10DataEncryptionofSmartParkBasedonQuantumSecuritySystem

DatatransmissionwiththequantumencryptionsystemisshownintheFigure2.10.Thequantumkeydistributionsystemprovideskeysforreliableauthenticationanddataencryptionofvideo,pictures,pointclouddata,trafficinformation,locationinformationandotherdataofthepark.Thequantumkeydistributionsystemcanalsochangethekeyaccordingtothespecificbusinessrequirements,realizingtheintelligentmanagementoftheparkandsecuredatatransmission.Inthefuture,thequantumencryptionsystemwillbeappliedtotheconstructionof

WinterOlympicsSmartParkandXiong'anNewArea.

Forexample,inXiong’anquantumcommunicationpilotasillustratedbyFigure2.11,aquantumcommunicationtrunklinebetweenBeijingandXiong’anwillbedeployed,anda

quantumkeydistributionplatformwillbeintroducedtoprovidesecuritykeysforcustomersinthe

22/33

fieldsofInternetofthings(IoT),Internetofvehicles(IoV),smartenergy,smartgovernmentandsoon.Thequantumkeydistributionplatformandtheserviceapplicationservercanbedeployedtogetherwithoutchangingtheoriginalnetworktopology,andtheencryptedbusinessisstill

transmittedintheoriginalservicechannels.

Figure2.11QuantumCommunicationPilotinXiong'an

23/33

3QuantumMachineLearning(QML)

Itishighlyexpectedthatthe6thgeneration(6G)communicationsystemswilllayafoundationofpervasivedigitization,ubiquitousconnectionandfullintelligence.Theprovisionsofamany-foldincreaseinthecommunicationsystemperformanceandrichdiversityofinnovativeservicescallforarevolutionarypromotionininformationprocessingcapability.Inthisregard,theemergingQuantumMachineLearning(QML)hasattractedsignificantattentionduetoitsinformationprocessingparadigmbycombiningtheestablishedbenefitsofquantummechanismandmachinelearning.Inthefollowing,westartwiththeconceptsofQMLonahighlevelandthendiscussmachinelearning(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論