版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆四川省會(huì)理一中數(shù)學(xué)高一下期末檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知是兩條不重合的直線,為兩個(gè)不同的平面,則下列說法正確的是()A.若,是異面直線,那么與相交B.若//,,則C.若,則//D.若//,則2.在△ABC中,AB=,AC=1,,△ABC的面積為,則()A.30° B.45° C.60° D.75°3.在等比數(shù)列中,已知,那么的前4項(xiàng)和為().A.81 B.120 C.121 D.1924.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):x24568y3040t5070根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的回歸直線方程為y=6.5x+17.5,則tA.40 B.50 C.60 D.705.已知方程表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是()A. B. C. D.6.在中,角所對(duì)的邊分別為,若,則此三角形()A.無解 B.有一解 C.有兩解 D.解的個(gè)數(shù)不確定7.在中,,則的形狀是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形8.右邊程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入分別為14,18,則輸出的()A.0 B.2 C.4 D.149.的值等于()A. B.- C. D.-10.已知數(shù)列的前n項(xiàng)和為,且滿足,則()A.1 B. C. D.2016二、填空題:本大題共6小題,每小題5分,共30分。11.在半徑為的球中有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時(shí),球的表面積與該正四棱柱的側(cè)面積之差是__________.12.某市三所學(xué)校有高三文科學(xué)生分別為500人,400人,300人,在三月進(jìn)行全市聯(lián)考后,準(zhǔn)備用分層抽樣的方法從三所高三文科學(xué)生中抽取容量為24的樣本,進(jìn)行成績分析,則應(yīng)從校高三文科學(xué)生中抽取_____________人.13.已知的內(nèi)角、、的對(duì)邊分別為、、,若,,且的面積是,___________.14.已知正方形,向正方形內(nèi)任投一點(diǎn),則的面積大于正方形面積四分之一的概率是______.15.已知數(shù)列{}滿足,若數(shù)列{}單調(diào)遞增,數(shù)列{}單調(diào)遞減,數(shù)列{}的通項(xiàng)公式為____.16.某幾何體的三視圖如圖所示,則該幾何體的體積為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在平面四邊形ABCD中,,,,.(1)若點(diǎn)E為邊CD上的動(dòng)點(diǎn),求的最小值;(2)若,,,求的值.18.如圖,在平面直角坐標(biāo)系xOy中,已知以M點(diǎn)為圓心的圓及其上一點(diǎn).(1)設(shè)圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn)且,求直線l的方程.19.若不等式恒成立,求實(shí)數(shù)a的取值范圍。20.已知.(1)求函數(shù)的最小正周期;(2)求函數(shù)在閉區(qū)間上的最小值并求當(dāng)取最小值時(shí),的取值.21.足球,有“世界第一運(yùn)動(dòng)的美譽(yù),是全球體育界最具影響力的單項(xiàng)體育運(yùn)動(dòng)之一.足球傳球是足球運(yùn)動(dòng)技術(shù)之一,是比賽中組織進(jìn)攻、組織戰(zhàn)術(shù)配合和進(jìn)行射門的主要手段.足球截球也是足球運(yùn)動(dòng)技術(shù)的一種,是將對(duì)方控制或傳出的球占為己有,或破壞對(duì)方對(duì)球的控制的技術(shù),是比賽中由守轉(zhuǎn)攻的主要手段.這兩種運(yùn)動(dòng)技術(shù)都需要球運(yùn)動(dòng)員的正確判斷和選擇.現(xiàn)有甲、乙兩隊(duì)進(jìn)行足球友誼賽,A、B兩名運(yùn)動(dòng)員是甲隊(duì)隊(duì)員,C是乙隊(duì)隊(duì)員,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.現(xiàn)A沿北偏西60°方向水平傳球,球速為10m/s,同時(shí)B沿北偏西30°方向以10m/s的速度前往接球,C同時(shí)也以10m/s的速度前去截球.假設(shè)球與B、C都在同一平面運(yùn)動(dòng),且均保持勻速直線運(yùn)動(dòng).(1)若C沿南偏西60°方向前去截球,試判斷B能否接到球?請(qǐng)說明理由.(2)若C改變(1)的方向前去截球,試判斷C能否球成功?請(qǐng)說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
采用逐一驗(yàn)證法,結(jié)合線面以及線線之間的位置關(guān)系,可得結(jié)果.【詳解】若,是異面直線,與也可平行,故A錯(cuò)若//,,也可以在內(nèi),故B錯(cuò)若也可以在內(nèi),故C錯(cuò)若//,則,故D對(duì)故選:D【點(diǎn)睛】本題主要考查線面以及線線之間的位置關(guān)系,屬基礎(chǔ)題.2、C【解析】
試題分析:由三角形面積公式得,,所以.顯然三角形為直角三角形,且,所以.考點(diǎn):解三角形.3、B【解析】
根據(jù)求出公比,利用等比數(shù)列的前n項(xiàng)和公式即可求出.【詳解】,.故選:B【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式,等比數(shù)列的前n項(xiàng)和,屬于中檔題.4、C【解析】分析:由題意,求得這組熟記的樣本中心(x詳解:由題意,根據(jù)表中的數(shù)據(jù)可得x=2+4+5+6+85把(x,y)代入回歸直線的方程,得點(diǎn)睛:本題主要考查了回歸分析的初步應(yīng)用,其中熟記回歸直線的基本特征——回歸直線方程經(jīng)過樣本中心點(diǎn)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.5、B【解析】
利用橢圓的性質(zhì)列出不等式求解即可.【詳解】方程1表示焦點(diǎn)在y軸上的橢圓,可得,解得1<m.則m的取值范圍為:(1,).故選B.【點(diǎn)睛】本題考查橢圓的方程及簡單性質(zhì)的應(yīng)用,基本知識(shí)的考查.6、C【解析】
利用正弦定理求,與比較的大小,判斷B能否取相應(yīng)的銳角或鈍角.【詳解】由及正弦定理,得,,B可取銳角;當(dāng)B為鈍角時(shí),,由正弦函數(shù)在遞減,,可取.故選C.【點(diǎn)睛】本題考查正弦定理,解三角形中何時(shí)無解、一解、兩解的條件判斷,屬于中檔題.7、B【解析】
將,分別代入中,整理可得,即可得到,進(jìn)而得到結(jié)論【詳解】由題可得,即在中,,,即又,是直角三角形,故選B【點(diǎn)睛】本題考查三角形形狀的判定,考查和角公式,考查已知三角函數(shù)值求角8、B【解析】由a=14,b=18,a<b,則b變?yōu)?8﹣14=4,由a>b,則a變?yōu)?4﹣4=10,由a>b,則a變?yōu)?0﹣4=6,由a>b,則a變?yōu)?﹣4=1,由a<b,則b變?yōu)?﹣1=1,由a=b=1,則輸出的a=1.故選B.9、C【解析】
利用誘導(dǎo)公式把化簡成.【詳解】【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,即把任意角的三角函數(shù)轉(zhuǎn)化成銳角三角函數(shù),考查基本運(yùn)算求解能力.10、C【解析】
利用和關(guān)系得到數(shù)列通項(xiàng)公式,代入數(shù)據(jù)得到答案.【詳解】已知數(shù)列的前n項(xiàng)和為,且滿足,相減:取答案選C【點(diǎn)睛】本題考查了和關(guān)系,數(shù)列的通項(xiàng)公式,意在考查學(xué)生的計(jì)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)正四棱柱外接球半徑的求解方法可得到正四棱柱底面邊長和高的關(guān)系,利用基本不等式得到,得到側(cè)面積最大值為;根據(jù)球的表面積公式求得球的表面積,作差得到結(jié)果.【詳解】設(shè)球內(nèi)接正四棱柱的底面邊長為,高為則球的半徑:正四棱柱的側(cè)面積:球的表面積:當(dāng)正四棱柱的側(cè)面積最大時(shí),球的表面積與該正四棱柱的側(cè)面積之差為:本題正確結(jié)果:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)問題的求解,關(guān)鍵是能夠根據(jù)外接球半徑構(gòu)造出關(guān)于正棱柱底面邊長和高的關(guān)系式,利用基本不等式求得最值;其中還涉及到球的表面積公式的應(yīng)用.12、8【解析】
利用分層抽樣中比例關(guān)系列方程可求.【詳解】由已知三所學(xué)???cè)藬?shù)為500+400+300=1200,設(shè)從校高三文科學(xué)生中抽取x人,由分層抽樣的要求及抽取樣本容量為24,所以,,故答案為8.【點(diǎn)睛】本題考查分層抽樣,考查計(jì)算求解能力,屬于基本題.13、【解析】
利用同角三角函數(shù)計(jì)算出的值,利用三角形的面積公式和條件可求出、的值,再利用余弦定理求出的值.【詳解】,,,且的面積是,,,,,由余弦定理得,.故答案為.【點(diǎn)睛】本題考查利用余弦定理解三角形,同時(shí)也考查了同角三角函數(shù)的基本關(guān)系、三角形面積公式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.14、【解析】
向正方形內(nèi)任投一點(diǎn),所有等可能基本事件構(gòu)成正方形區(qū)域,當(dāng)?shù)拿娣e大于正方形面積四分之一的所有基本事件構(gòu)成區(qū)域矩形區(qū)域,由面積比可得概率值.【詳解】如圖邊長為1的正方形中,分別是的中點(diǎn),當(dāng)點(diǎn)在線段上時(shí),的面積為,所以的面積大于正方形面積四分之一,此時(shí)點(diǎn)應(yīng)在矩形內(nèi),由幾何概型得:,故填.【點(diǎn)睛】本題考查幾何概型,利用面積比求概率值,考查對(duì)幾何概型概率計(jì)算.15、【解析】
分別求出{}、{}的通項(xiàng)公式,再統(tǒng)一形式即可得解?!驹斀狻拷猓焊鶕?jù)題意,又單調(diào)遞減,{}單調(diào)遞減增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,綜上,【點(diǎn)睛】本題考查了等比數(shù)列性質(zhì)的靈活運(yùn)用,考查了分類思想和運(yùn)算能力,屬于難題。16、【解析】由三視圖知該幾何體是一個(gè)半圓錐挖掉一個(gè)三棱錐后剩余的部分,如圖所示,所以其體積為.點(diǎn)睛:求多面體的外接球的面積和體積問題常用方法有(1)三條棱兩兩互相垂直時(shí),可恢復(fù)為長方體,利用長方體的體對(duì)角線為外接球的直徑,求出球的半徑;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的對(duì)稱性,球心為上下底面外接圓的圓心連線的中點(diǎn),再根據(jù)勾股定理求球的半徑;(3)如果設(shè)計(jì)幾何體有兩個(gè)面相交,可過兩個(gè)面的外心分別作兩個(gè)面的垂線,垂線的交點(diǎn)為幾何體的球心,本題就是第三種方法.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)建立平面直角坐標(biāo)系,將范圍問題轉(zhuǎn)化為函數(shù)的最值問題,進(jìn)而求解函數(shù)的最值即可;(2)根據(jù)、兩點(diǎn)的位置,可以寫出對(duì)應(yīng)的坐標(biāo),從而在直角三角形中求得的正余弦,進(jìn)而用余弦的和角公式進(jìn)行求解.【詳解】(1)設(shè)AC,BD相交于O,由于,所以,所以,因此,以DB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標(biāo)系如下圖所示:故,,,.因?yàn)橹本€CD的方程為,所以可設(shè).所以,.所以,當(dāng)時(shí),最小為.(2)因?yàn)椋?,所以?因此,,.所以,.所以,.【點(diǎn)睛】本題考查利用向量解決幾何問題,涉及范圍問題的求解,屬經(jīng)典好題.18、(1)(2)或.【解析】
(1)根據(jù)由圓心在直線y=6上,可設(shè),再由圓N與y軸相切,與圓M外切得到圓N的半徑為和得解.(2)由直線l平行于OA,求得直線l的斜率,設(shè)出直線l的方程,求得圓心M到直線l的距離,再根據(jù)垂徑定理確定等量關(guān)系,求直線方程.【詳解】(1)圓M的標(biāo)準(zhǔn)方程為,所以圓心M(7,6),半徑為5,.由圓N圓心在直線y=6上,可設(shè)因?yàn)閳AN與y軸相切,與圓M外切所以,圓N的半徑為從而解得.所以圓N的標(biāo)準(zhǔn)方程為.(2)因?yàn)橹本€l平行于OA,所以直線l的斜率為.設(shè)直線l的方程為,即則圓心M到直線l的距離因?yàn)槎越獾没?故直線l的方程為或.【點(diǎn)睛】本題主要考查了直線方程,圓的方程,直線與直線,直線與圓,圓與圓的位置關(guān)系,還考查了運(yùn)算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.19、【解析】
恒成立的條件下由于給定了的范圍,故可考慮對(duì)進(jìn)行分類,同時(shí)利用參變分離法求解的范圍.【詳解】由題意得(1),時(shí),恒成立(2),等價(jià)于又∴∴實(shí)數(shù)a的取值范圍是【點(diǎn)睛】含有分式的不等式恒成立問題,要注意到分母的正負(fù)對(duì)于不等號(hào)的影響;若是變量的范圍給出了,可針對(duì)于變量的范圍做具體分析,然后去求解參數(shù)范圍.20、(1);(2),【解析】
(1)先化簡,再求最小正周期;(2)由,得,再結(jié)合的函數(shù)圖像求最小值.【詳解】(1),即,所以的最小正周期是;(2)由(1)知,又由,得,所以當(dāng)時(shí),的最小值為,即時(shí),的最小值為.【點(diǎn)睛】本題考查三角恒等變換,考查三角函數(shù)圖像的性質(zhì)應(yīng)用,屬于中檔題.21、(1)能接到;(2)不能接到【解析】
(1)在中由條件可得,,進(jìn)一步可得為等邊三角形,然后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版回遷住宅買賣協(xié)議樣本版B版
- 2024年施工設(shè)計(jì)合同范本版B版
- 2024年度餐飲服務(wù)勞務(wù)分包公司管理規(guī)范合同3篇
- 志愿服務(wù)活動(dòng)計(jì)劃方案范文
- 中班月工作計(jì)劃
- 2022學(xué)校教學(xué)工作計(jì)劃
- 2025年中國連續(xù)纖維材料市場供需預(yù)測及投資戰(zhàn)略研究咨詢報(bào)告
- 房屋租賃合同范文合集十篇
- 《畫》-探索繪畫的奧秘與魅力
- 教師個(gè)人師德師風(fēng)學(xué)習(xí)計(jì)劃
- 中南大學(xué)《大學(xué)物理C(3)(一)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024新人教版英語七年級(jí)上單詞默寫表(小學(xué)部分)
- 電力拖動(dòng)教學(xué)講義
- 2024社保費(fèi)測試(五)專項(xiàng)試卷
- 招商會(huì)會(huì)議流程綱要
- 安全生產(chǎn)工作年終總結(jié)
- 2024-2025學(xué)年人教版七年級(jí)英語上冊(cè)各單元重點(diǎn)句子
- 信息技術(shù)行業(yè)數(shù)據(jù)安全HSE方案
- 中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-氣管切開非機(jī)械通氣患者氣道護(hù)理
- 四川省成都市武侯區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期1月期末語文試卷
- 兒科護(hù)理安全警示教育
評(píng)論
0/150
提交評(píng)論