北京市19中2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
北京市19中2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
北京市19中2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
北京市19中2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
北京市19中2024屆高一下數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市19中2024屆高一下數(shù)學(xué)期末監(jiān)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知數(shù)列an滿足a1=1,aA.32021-18 B.320202.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報廣告費(fèi)用為6萬元時銷售額為()A.63.6萬元 B.65.5萬元 C.67.7萬元 D.72.0萬元3.讀下面的程序框圖,若輸入的值為-5,則輸出的結(jié)果是()A.-1 B.0 C.1 D.24.在三棱錐中,平面,,,,,則三棱錐外接球的體積為()A. B. C. D.5.已知直線過點(diǎn),且在縱坐標(biāo)軸上的截距為橫坐標(biāo)軸上的截距的兩倍,則直線的方程為()A. B.C.或 D.或6.已知函數(shù),若存在實(shí)數(shù),滿足,則實(shí)數(shù)的取值范圍為(

)A. B.C. D.7.點(diǎn)、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.8.在中,a、b分別為內(nèi)角A、B的對邊,如果,,,則()A. B. C. D.9.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.10.在公比為2的等比數(shù)列中,,則等于()A.4 B.8 C.12 D.24二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列中,,則_______12.已知向量,,且,則_______.13.函數(shù)在的值域是__________________.14.已知數(shù)列:,,,,,,,,,,,,,,,,,則__________.15.已知x,y=R+,且滿足x2y6,若xy的最大值與最小值分別為M和m,M+m=_____.16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求當(dāng)m為何值時,(1)直線平分圓;(2)直線與圓相切.18.設(shè)集合,其中.(1)寫出集合中的所有元素;(2)設(shè),證明“”的充要條件是“”(3)設(shè)集合,設(shè),使得,且,試判斷“”是“”的什么條件并說明理由.19.已知數(shù)列中,,.(1)證明數(shù)列為等比數(shù)列,并求的通項(xiàng)公式;(2)數(shù)列滿足,數(shù)列的前項(xiàng)和為,求證.20.如圖1,在中,,,,分別是,,中點(diǎn),,.現(xiàn)將沿折起,如圖2所示,使二面角為,是的中點(diǎn).(1)求證:面面;(2)求直線與平面所成的角的正弦值.21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

由題意得出3n+1-12<an+2【詳解】∵an+1-又∵an+2-∵an∈Z,∴于是得到a3上述所有等式全部相加得a2019因此,a2019【點(diǎn)睛】本題考查數(shù)列項(xiàng)的計(jì)算,考查累加法的應(yīng)用,解題的關(guān)鍵就是根據(jù)題中條件構(gòu)造出等式an+22、B【解析】∵,∵數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,

回歸方程中的為9.4∴線性回歸方程是y=9.4x+9.1,

∴廣告費(fèi)用為6萬元時銷售額為9.4×6+9.1=65.5,

故選B.3、A【解析】

直接模擬程序框圖運(yùn)行,即可得出結(jié)論.【詳解】模擬程序框圖的運(yùn)行過程如下:輸入,進(jìn)入判斷結(jié)構(gòu),則,,輸出,故選:A.【點(diǎn)睛】本題主要考查程序框圖,一般求輸出結(jié)果時,常模擬程序運(yùn)行,列表求解.4、B【解析】

在三棱錐中,求得,又由底面,所以,在直角中,求得,進(jìn)而得到三棱錐外接球的直徑,得到,利用體積公式,即可求解.【詳解】由題意知,在三棱錐中,,,,所以,又由底面,所以,在直角中,,所以,根據(jù)球的性質(zhì),可得三棱錐外接球的直徑為,即,所以球的體積為,故選B.【點(diǎn)睛】本題主要考查了與球有關(guān)的組合體中球的體積的計(jì)算,其中解答中根據(jù)組合體的結(jié)構(gòu)特征和球的性質(zhì),準(zhǔn)確求解球的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.5、D【解析】

根據(jù)題意,分直線是否經(jīng)過原點(diǎn)2種情況討論,分別求出直線的方程,即可得答案.【詳解】根據(jù)題意,直線分2種情況討論:①當(dāng)直線過原點(diǎn)時,又由直線經(jīng)過點(diǎn),所求直線方程為,整理為,②當(dāng)直線不過原點(diǎn)時,設(shè)直線的方程為,代入點(diǎn)的坐標(biāo)得,解得,此時直線的方程為,整理為.故直線的方程為或.故選:D.【點(diǎn)睛】本題考查直線的截距式方程,注意分析直線的截距是否為0,屬于基礎(chǔ)題.6、A【解析】

根據(jù)題意可知方程有解即可,代入解析式化簡后,利用基本不等式得出,再利用分類討論思想即可求出實(shí)數(shù)的取值范圍.【詳解】由題意知,方程有解,則,化簡得,即,因?yàn)椋?,?dāng)時,化簡得,解得;當(dāng)時,化簡得,解得,綜上所述的取值范圍為.故答案為:A【點(diǎn)睛】本題主要考查了函數(shù)的基本性質(zhì)的應(yīng)用,以及利用基本不等式求最值的應(yīng)用,其中解答中利用題設(shè)條件化簡,合理利用基本不等式求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.7、D【解析】

根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點(diǎn)均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當(dāng)與面垂直時體積最大,最大值為,,設(shè)球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點(diǎn)睛】本題考查的知識點(diǎn)是球內(nèi)接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關(guān)鍵.8、A【解析】

先求出再利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:A.【點(diǎn)睛】本題注意考查正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.9、A【解析】

根據(jù)圓錐的底面圓周長等于半圓弧長可計(jì)算出圓錐底面圓半徑,由勾股定理可計(jì)算出圓錐的高,再利用錐體體積公式可計(jì)算出圓錐的體積.【詳解】設(shè)圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【點(diǎn)睛】本題考查圓錐體積的計(jì)算,解題的關(guān)鍵就是要計(jì)算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計(jì)算,并分析出一些幾何等量關(guān)系,考查空間想象能力與計(jì)算能力,屬于中等題.10、D【解析】

由等比數(shù)列的性質(zhì)可得,可求出,則答案可求解.【詳解】等比數(shù)列的公比為2,由,即,所以舍所以故選:D【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)和通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設(shè)等差數(shù)列的公差為,用與表示等式,再用與表示代數(shù)式可得出答案。【詳解】設(shè)等差數(shù)列的公差為,則,因此,,故答案為:?!军c(diǎn)睛】本題考查等差數(shù)列中項(xiàng)的計(jì)算,解決等差數(shù)列有兩種方法:基本性質(zhì)法(與下標(biāo)相關(guān)的性質(zhì))以及基本量法(用首項(xiàng)和公差來表示相應(yīng)的量),一般利用基本量法來進(jìn)行計(jì)算,此外,靈活利用與下標(biāo)有關(guān)的基本性質(zhì)進(jìn)行求解,能簡化計(jì)算,屬于中等題。12、-2或3【解析】

用坐標(biāo)表示向量,然后根據(jù)垂直關(guān)系得到坐標(biāo)運(yùn)算關(guān)系,求出結(jié)果.【詳解】由題意得:或本題正確結(jié)果:或【點(diǎn)睛】本題考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題.13、【解析】

利用反三角函數(shù)的性質(zhì)及,可得答案.【詳解】解:,且,,∴,故答案為:【點(diǎn)睛】本題主要考查反三角函數(shù)的性質(zhì),相對簡單.14、【解析】

根據(jù)數(shù)列的規(guī)律和可知的取值為,則分母為;又為分母為的項(xiàng)中的第項(xiàng),則分子為,從而得到結(jié)果.【詳解】當(dāng)時,;當(dāng)時,的分母為:又的分子為:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)數(shù)列的規(guī)律求解數(shù)列中的項(xiàng),關(guān)鍵是能夠根據(jù)分子的變化特點(diǎn)確定的取值.15、【解析】

設(shè),則,可得,然后利用基本不等式得到關(guān)于的一元二次方程解方程可得的最大值和最小值,進(jìn)而得到結(jié)論.【詳解】∵x,y=R+,設(shè),則,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值與最小值分別為M和m,∴M,m,∴M+m.【點(diǎn)睛】本題考查了基本不等式的應(yīng)用和一元二次不等式的解法,考查了轉(zhuǎn)化思想和運(yùn)算推理能力,屬于中檔題.16、-6【解析】

由題意可得,求解即可.【詳解】因?yàn)榈炔顢?shù)列的前項(xiàng)和為,,所以由等差數(shù)列的通項(xiàng)公式與求和公式可得解得.故答案為-6.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)m=0;(2)m=±2.【解析】試題分析:(1)直線平分圓,即直線過圓心,將圓心坐標(biāo)代入直線方程可得m值(2)根據(jù)圓心到直線距離等于半徑列方程,解得m值試題解析:解:(1)∵直線平分圓,所以圓心在直線y=x+m上,即有m=0.(2)∵直線與圓相切,所以圓心到直線的距離等于半徑,∴d==2,m=±2.即m=±2時,直線l與圓相切.點(diǎn)睛:判斷直線與圓的位置關(guān)系的常見方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中最常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動直線問題.18、(1),,,;(2)證明見解析;(3)充要條件.【解析】

(1)根據(jù)題意,直接列出即可(2)利用的和的符號和最高次的相同,利用排除法可以證明。(3)利用(2)的結(jié)論完成(3)即可?!驹斀狻浚?)中的元素有,,,。(2)充分性:當(dāng)時,顯然成立。必要性:若=1,則若=,則若的值有個1,和個。不妨設(shè)2的次數(shù)最高次為次,其系數(shù)為1,則,說明只要最高次的系數(shù)是正的,整個式子就是正的,同理,只要最高次的系數(shù)是負(fù)的,整個式子就是負(fù)的,說明最高次的系數(shù)只能是0,就是說,即綜上“”的充要條件是“”(3)等價于等價于由(2)得“=”的充要條件是“”即“=”是“”的充要條件【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于難題.19、(1)證明見解析;;(2)【解析】

(1)先證明數(shù)列是以3為公比,以為首項(xiàng)的等比數(shù)列,從而,由此能求出的通項(xiàng)公式;(2)由(1)推導(dǎo)出,從而,利用錯位相減法求和,利用放縮法證明.【詳解】由,,得,,數(shù)列是以3為公比,以為首項(xiàng)的等比數(shù)列,從而,數(shù)列滿足,,,,兩式相減得:,,,【點(diǎn)睛】本題主要考查等比數(shù)列的定義、通項(xiàng)公式與求和公式,以及錯位相減法的應(yīng)用,是中檔題.一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解,在寫出“”與“”的表達(dá)式時應(yīng)特別注意將兩式“錯項(xiàng)對齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式.20、(1)見解析(2)【解析】

(1)證明面得到面面.(2)先判斷為直線與平面所成的角,再計(jì)算其正弦值.【詳解】(1)證明:法一:由已知得:且,,∴面.∵,∴面.∵面,∴,又∵,∴,∵,,∴面.面,∴.又∵且是中點(diǎn),∴,∴,∴面.∵面,∴面面.法二:同法一得面.又∵,面,面,∴面.同理面,,面,面.∴面面.∴面,面,∴.又∵且是中點(diǎn),∴,∴,∴面.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論