2023年中考數(shù)學沖刺復習知識點高頻考點_第1頁
2023年中考數(shù)學沖刺復習知識點高頻考點_第2頁
2023年中考數(shù)學沖刺復習知識點高頻考點_第3頁
2023年中考數(shù)學沖刺復習知識點高頻考點_第4頁
2023年中考數(shù)學沖刺復習知識點高頻考點_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

初中數(shù)學21個高頻考點

1.數(shù)軸

(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.

數(shù)軸的三要素:原點,單位長度,正方向。

(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上

的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應任意實

數(shù),包括無理數(shù).)

(3)用數(shù)軸比較大?。阂话銇碚f,當數(shù)軸方向朝右時,右邊的數(shù)總比

左邊的數(shù)大。

2.相反數(shù)

(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).

(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)

軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距

離相等。

(3)多重符號的化簡:與“+”個數(shù)無關(guān),有奇數(shù)個“﹣”號結(jié)果為負,

有偶數(shù)個“﹣”號,結(jié)果為正。

(4)規(guī)律方法總結(jié):求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添

加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是

一個整體,在整體前面添負號時,要用小括號。

3.絕對值

1.概念:數(shù)軸上一些數(shù)與原點的距離叫做這個數(shù)的絕對值。

①互為相反數(shù)的兩個數(shù)絕對值相等;

②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有

絕對值等于負數(shù)的數(shù).

③有理數(shù)的絕對值都是非負數(shù).

2.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來

確定:

①當a是正有理數(shù)時,a的絕對值是它本身a;

②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;

③當a是零時,a的絕對值是零.

即,a,={a(a>0)0(a=0)﹣a(a<0)

4.有理數(shù)大小比較

1.有理數(shù)的大小比較

比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小

的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可

以利用數(shù)的性質(zhì)比較異號兩數(shù)及0的大小,利用絕對值比較兩個負數(shù)的大

小。

2.有理數(shù)大小比較的法則:

①正數(shù)都大于0;

②負數(shù)都小于0;

③正數(shù)大于一切負數(shù);

④兩個負數(shù),絕對值大的其值反而小。

規(guī)律方法·有理數(shù)大小比較的三種方法:

(1)法則比較:正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).兩

個負數(shù)比較大小,絕對值大的反而?。?/p>

(2)數(shù)軸比較:在數(shù)軸上右邊的點表示的數(shù)大于左邊的點表示的數(shù).

(3)作差比較:

若a﹣b>0,則a>b;

若a﹣b<0,則a<b;

若a﹣b=0,則a=b.

5.有理數(shù)的減法

有理數(shù)減法法則

減去一個數(shù),等于加上這個數(shù)的相反數(shù)。即:a﹣b=a+(﹣b)

方法指引:

①在進行減法運算時,首先弄清減數(shù)的符號;

②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減

號變加號);二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù));

注意:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨意交換;因

為減法沒有交換律。

減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應依

法則進行計算。

6.有理數(shù)的乘法

(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值

相乘。

(2)任何數(shù)同零相乘,都得0。

(3)多個有理數(shù)相乘的法則:

①幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)

有奇數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正.

②幾個數(shù)相乘,有一個因數(shù)為0,積就為0。

(4)方法指引

①運用乘法法則,先確定符號,再把絕對值相乘.

②多個因數(shù)相乘,看0因數(shù)和積的符號當先,這樣做使運算既準確又

簡單.

7.有理數(shù)的混合運算

1.有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運

算,應按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算。

2.進行有理數(shù)的混合運算時,注意各個運算律的運用,使運算過程得

到簡化。

有理數(shù)混合運算的四種運算技巧:

(1)轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是

在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為分數(shù)進行約分計算.

(2)湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同

的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結(jié)合為一組求解.

(3)分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,

然后進行計算.

(4)巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使

計算更簡便.

8.科學記數(shù)法—表示較大的數(shù)

1.科學記數(shù)法:把一個大于10的數(shù)記成a某10n的形式,其中a是

整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù),這種記數(shù)法叫做科學記數(shù)法。(科

學記數(shù)法形式:a某10n,其中1≤a<10,n為正整數(shù))

2.規(guī)律方法總結(jié)

①科學記數(shù)法中a的要求和10的指數(shù)n的表示規(guī)律為關(guān)鍵,由于10

的指數(shù)比原來的整數(shù)位數(shù)少1;按此規(guī)律,先數(shù)一下原數(shù)的整數(shù)位數(shù),即

可求出10的指數(shù)n。

②記數(shù)法要求是大于10的數(shù)可用科學記數(shù)法表示,實質(zhì)上絕對值大

于10的負數(shù)同樣可用此法表示,只是前面多一個負號.

9.代數(shù)式求值

(1)代數(shù)式的值:用數(shù)值代替代數(shù)式里的字母,計算后所得的結(jié)果叫

做代數(shù)式的值。

(2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的

代數(shù)式可以化簡,要先化簡再求值。

題型簡單總結(jié)以下三種:

①已知條件不化簡,所給代數(shù)式化簡;

②已知條件化簡,所給代數(shù)式不化簡;

③已知條件和所給代數(shù)式都要化簡.

10.規(guī)律型:圖形的變化類

首先應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過

分析找到各部分的變化規(guī)律后直接利用規(guī)律求解。探尋規(guī)律要認真觀察、

仔細思考,善用聯(lián)想來解決這類問題。

11.等式的性質(zhì)

1.等式的性質(zhì)

性質(zhì)1等式兩邊加同一個數(shù)(或式子)結(jié)果仍得等式;

性質(zhì)2等式兩邊乘同一個數(shù)或除以一個不為零的數(shù),結(jié)果仍得等式。

2.利用等式的性質(zhì)解方程

利用等式的性質(zhì)對方程進行變形,使方程的形式向某=a的形式轉(zhuǎn)化.

應用時要注意把握兩關(guān):

①怎樣變形;

②依據(jù)哪一條,變形時只有做到步步有據(jù),才能保證是正確的.

12.一元一次方程的解

定義:使一元一次方程左右兩邊相等的未知數(shù)的值叫做一元一次方程

的解。

把方程的解代入原方程,等式左右兩邊相等。

13.解一元一次方程

1.解一元一次方程的一般步驟

去分母、去括號、移項、合并同類項、系數(shù)化為1,這僅是解一元一

次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程

逐漸向某=a形式轉(zhuǎn)化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分

母;若既有分母又有括號,且括號外的項在乘括號內(nèi)各項后能消去分母,

就先去括號。

3.在解類似于“a某+b某=c”的方程時,將方程左邊,按合并同類項

的方法并為一項即(a+b)某=c。

使方程逐漸轉(zhuǎn)化為a某=b的最簡形式體現(xiàn)化歸思想。

將a某=b系數(shù)化為1時,要準確計算,一弄清求某時,方程兩邊除

以的是a還是b,尤其a為分數(shù)時;二要準確判斷符號,a、b同號某為正,

a、b異號某為負。

14.一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規(guī)律型問題;

(2)數(shù)字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價某100%);

(4)工程問題(①工作量=人均效率某人數(shù)某時間;②如果一件工作分

幾個階段完成,那么各階段的工作量的和=工作總量);

(5)行程問題(路程=速度某時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水

速度﹣水流速度).

2.利用方程解決實際問題的基本思路

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或

間接設一關(guān)鍵的未知量為某,然后用含某的式子表示相關(guān)的量,找出之間

的相等關(guān)系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關(guān)系.

(2)設:設未知數(shù)(某),根據(jù)實際情況,可設直接未知數(shù)(問什么

設什么),也可設間接未知數(shù).

(3)列:根據(jù)等量關(guān)系列出方程.

(4)解:解方程,求得未知數(shù)的值.

(5)答:檢驗未知數(shù)的值是否正確,是否符合題意,完整地寫出答句.

15.正方體相對兩個面上的文字

(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是

在對展開圖理解的基礎(chǔ)上直接想象.

(2)從實物出發(fā),結(jié)合具體的問題,辨析幾何體的展開圖,通過結(jié)合

立體圖形與平面圖形的轉(zhuǎn)化,建立空間觀念,是解決此類問題的關(guān)鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認

真確定哪兩個面的對面.

16.直線、射線、線段

(1)直線、射線、線段的表示方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直

線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩

個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,

端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用

兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關(guān)系:

①點經(jīng)過直線,說明點在直線上;

②點不經(jīng)過直線,說明點在直線外。

17.兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的

長度,學習此概念時,注意強調(diào)最后的兩個字“長度”,也就是說,它是

一個量,有大小,區(qū)別于線段,線段是圖形.線段的長度才是兩點的距

離.可以說畫線段,但不能說畫距離。

18.角的概念

(1)角的定義:有公共端點是兩條射線組成的圖形叫做角,其中這個

公共端點是角的頂點,這兩條射線是角的兩條邊。

(2)角的表示方法:角可以用一個大寫字母表示,也可以用三個大寫

字母表示.其中頂點字母要寫在中間,唯有在頂點處只有一個角的情況,

才可用頂點處的一個字母來記這個角,否則分不清這個字母究竟表示哪個

角.角還可以用一個希臘字母(如∠α,∠β,∠γ、…)表示,或用阿

拉伯數(shù)字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一條射線繞它的端點旋轉(zhuǎn)而形成

的圖形,當始邊與終邊成一條直線時形成平角,當始邊與終邊旋轉(zhuǎn)重合時,

形成周角。

(4)角的度量:度、分、秒是常用的角的度量單位.1度=60分,即

1°=60′,1分=60秒,即1′=60″。

19.角平分線的定義

從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角

的平分線。

①∠AOB是∠AOC和∠BOC的和,記作:∠AOB=∠AOC+∠BOC.∠AOC

是∠AOB和∠BOC的差,記作:∠AOC=∠AOB﹣∠BOC。

②若射線OC是∠AOB的三等分線,則∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的運算

(1)度、分、秒的加減運算。

在進行度分秒的加減時,要將度與度,分與分,秒與秒相加減,分秒

相加,逢60要進位,相減時,要借1化60。

(2)度、分、秒的乘除運算

①乘法:度、分、秒分別相乘,結(jié)果逢60要進位。

②除法:度、分、秒分別去除,把每一次的余數(shù)化作下一級單位進一

步去除。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論