版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市五校2021-2022學年中考一模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.中國傳統(tǒng)扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.2.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.3.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n4.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.5.若函數(shù)y=kx﹣b的圖象如圖所示,則關于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>56.計算(﹣ab2)3的結果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b67.如圖,⊙O內切于正方形ABCD,邊BC、DC上兩點M、N,且MN是⊙O的切線,當△AMN的面積為4時,則⊙O的半徑r是()A. B.2 C.2 D.48.已知地球上海洋面積約為361000000km2,361000000這個數(shù)用科學記數(shù)法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1099.的相反數(shù)是()A. B.- C. D.-10.已知拋物線y=x2+bx+c的對稱軸為x=2,若關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內有兩個相等的實數(shù)根,則c的取值范圍是(
)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=4二、填空題(共7小題,每小題3分,滿分21分)11.從“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中任取一個,取到既是軸對稱圖形又是中心對稱圖形的概率是_____.12.點A(x1,y1)、B(x1,y1)在二次函數(shù)y=x1﹣4x﹣1的圖象上,若當1<x1<1,3<x1<4時,則y1與y1的大小關系是y1_____y1.(用“>”、“<”、“=”填空)13.如圖,一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0),則光線從點A到點B經(jīng)過的路徑長為_____.14.(2017四川省攀枝花市)若關于x的分式方程無解,則實數(shù)m=_______.15.已知關于x的函數(shù)y=(m﹣1)x2+2x+m圖象與坐標軸只有2個交點,則m=_______.16.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.17.一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的體積為______.三、解答題(共7小題,滿分69分)18.(10分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調動方案.19.(5分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.請結合統(tǒng)計圖,回答下列問題:(1)本次調查學生共人,a=,并將條形圖補充完整;(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?(3)學校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.20.(8分)“千年古都,大美西安”.某校數(shù)學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據(jù)調查結果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調查的學生總人數(shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B”的學生人數(shù).21.(10分)已知關于x的方程.(1)當該方程的一個根為1時,求a的值及該方程的另一根;(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.22.(10分)益馬高速通車后,將桃江馬跡塘的農產(chǎn)品運往益陽的運輸成本大大降低.馬跡塘一農戶需要將A,B兩種農產(chǎn)品定期運往益陽某加工廠,每次運輸A,B產(chǎn)品的件數(shù)不變,原來每運一次的運費是1200元,現(xiàn)在每運一次的運費比原來減少了300元,A,B兩種產(chǎn)品原來的運費和現(xiàn)在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現(xiàn)在的運費3020(1)求每次運輸?shù)霓r產(chǎn)品中A,B產(chǎn)品各有多少件;(2)由于該農戶誠實守信,產(chǎn)品質量好,加工廠決定提高該農戶的供貨量,每次運送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍,問產(chǎn)品件數(shù)增加后,每次運費最少需要多少元.23.(12分)一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關系如圖所示.(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?24.(14分)已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)中心對稱圖形的概念進行分析.【詳解】A、不是中心對稱圖形,故此選項錯誤;
B、不是中心對稱圖形,故此選項錯誤;
C、是中心對稱圖形,故此選項正確;
D、不是中心對稱圖形,故此選項錯誤;
故選:C.【點睛】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、C【解析】
設I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設I的邊長為x根據(jù)題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應用,能夠根據(jù)題意列出方程是解題的關鍵.3、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據(jù)拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數(shù)的值越大,根據(jù)判斷出它們與對稱軸之間的關系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當時,得∵∴∴故選C.點睛:考查二次函數(shù)的圖象以及性質,開口向上,距離對稱軸越遠的點,對應的函數(shù)值越大,4、D【解析】
科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6
590
000=6.59×1.故選:D.【點睛】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.5、C【解析】
根據(jù)函數(shù)圖象知:一次函數(shù)過點(2,0);將此點坐標代入一次函數(shù)的解析式中,可求出k、b的關系式;然后將k、b的關系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數(shù)y=kx﹣b經(jīng)過點(2,0),∴2k﹣b=0,b=2k.函數(shù)值y隨x的增大而減小,則k<0;解關于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式.6、D【解析】
根據(jù)積的乘方與冪的乘方計算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點睛】本題主要考查冪的乘方與積的乘方,解題的關鍵是掌握積的乘方與冪的乘方的運算法則.7、C【解析】
連接,交于點設則根據(jù)△AMN的面積為4,列出方程求出的值,再計算半徑即可.【詳解】連接,交于點內切于正方形為的切線,經(jīng)過點為等腰直角三角形,為的切線,設則△AMN的面積為4,則即解得故選:C.【點睛】考查圓的切線的性質,等腰直角三角形的性質,三角形的面積公式,綜合性比較強.8、C【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).解答:解:將361000000用科學記數(shù)法表示為3.61×1.故選C.9、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.10、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數(shù)根,當△=0時,即c=4,此時x=2,滿足題意.當△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數(shù)與一元二次方程的關系.理解二次函數(shù)與一元二次方程之間的關系是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
試題分析:在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個,所以取到的圖形既是中心對稱圖形又是軸對稱圖形的概率為.【點睛】本題考查概率公式,掌握圖形特點是解題關鍵,難度不大.12、<【解析】
先根據(jù)二次函數(shù)的解析式判斷出拋物線的開口方向及對稱軸,根據(jù)圖象上的點的橫坐標距離對稱軸的遠近來判斷縱坐標的大?。驹斀狻坑啥魏瘮?shù)y=x1-4x-1=(x-1)1-5可知,其圖象開口向上,且對稱軸為x=1,
∵1<x1<1,3<x1<4,
∴A點橫坐標離對稱軸的距離小于B點橫坐標離對稱軸的距離,
∴y1<y1.
故答案為<.13、2【解析】
延長AC交x軸于B′.根據(jù)光的反射原理,點B、B′關于y軸對稱,CB=CB′.路徑長就是AB′的長度.結合A點坐標,運用勾股定理求解.【詳解】解:如圖所示,延長AC交x軸于B′.則點B、B′關于y軸對稱,CB=CB′.作AD⊥x軸于D點.則AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB=AC+CB′=AB′=2.即光線從點A到點B經(jīng)過的路徑長為2.考點:解直角三角形的應用點評:本題考查了直角三角形的有關知識,同時滲透光學中反射原理,構造直角三角形是解決本題關鍵14、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①當整式方程無解時,m﹣3=0,m=3;②當整式方程的解為分式方程的增根時,x=1,∴m﹣3=2,m=1.綜上所述:∴m的值為3或1.故答案為3或1.15、1或0或【解析】
分兩種情況討論:當函數(shù)為一次函數(shù)時,必與坐標軸有兩個交點;
當函數(shù)為二次函數(shù)時,將(0,0)代入解析式即可求出m的值.【詳解】解:(1)當m﹣1=0時,m=1,函數(shù)為一次函數(shù),解析式為y=2x+1,與x軸交點坐標為(﹣,0);與y軸交點坐標(0,1).符合題意.(2)當m﹣1≠0時,m≠1,函數(shù)為二次函數(shù),與坐標軸有兩個交點,則過原點,且與x軸有兩個不同的交點,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.將(0,0)代入解析式得,m=0,符合題意.(3)函數(shù)為二次函數(shù)時,還有一種情況是:與x軸只有一個交點,與Y軸交于交于另一點,這時:△=4﹣4(m﹣1)m=0,解得:m=.故答案為1或0或.【點睛】此題考查一次函數(shù)和二次函數(shù)的性質,解題關鍵是必須分兩種情況討論,不可盲目求解.16、50°【解析】
先根據(jù)三角形外角的性質求出∠BEF的度數(shù),再根據(jù)平行線的性質得到∠2的度數(shù).【詳解】如圖所示:
∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
∴∠BEF=∠1+∠F=50°,
∵AB∥CD,
∴∠2=∠BEF=50°,
故答案是:50°.【點睛】考查了平行線的性質,解題的關鍵是掌握、運用三角形外角的性質(三角形的一個外角等于與它不相鄰的兩個內角的和).17、1.【解析】試題解析:設俯視圖的正方形的邊長為.∵其俯視圖為正方形,從主視圖可以看出,正方形的對角線長為∴解得∴這個長方體的體積為4×3=1.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】
(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小,其調運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于根據(jù)題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.19、(1)300,10;(2)有800人;(3).【解析】試題分析:試題解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,圖形如下:(2)2000×40%=800(人),答:估計該校選擇“跑步”這種活動的學生約有800人;(3)畫樹狀圖為:共有12種等可能的結果數(shù),其中每班所抽到的兩項方式恰好是“跑步”和“跳繩”的結果數(shù)為2,所以每班所抽到的兩項方式恰好是“跑步”和“跳繩”的概率=.考點:1.用樣本估計總體;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;4.列表法與樹狀圖法.20、(1)40;(2)想去D景點的人數(shù)是8,圓心角度數(shù)是72°;(3)280.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調查的學生總人數(shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去B景點的人數(shù)所占的百分比即可.【詳解】(1)被調查的學生總人數(shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40-8-14-4-6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“醉美旅游景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=280,所以估計“醉美旅游景點B“的學生人數(shù)為280人.【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數(shù)據(jù)的大小,便于比較.也考查了扇形統(tǒng)計圖和利用樣本估計總體.21、(1),;(2)證明見解析.【解析】試題分析:(1)根據(jù)一元二次方程根與系數(shù)的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數(shù)根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.考點:1.一元二次方程根與系數(shù)的關系;2.一元二次方程根根的判別式;3.配方法的應用.22、(1)每次運輸?shù)霓r產(chǎn)品中A產(chǎn)品有10件,每次運輸?shù)霓r產(chǎn)品中B產(chǎn)品有30件,(2)產(chǎn)品件數(shù)增加后,每次運費最少需要1120元.【解析】
(1)設每次運輸?shù)霓r產(chǎn)品中A產(chǎn)品有x件,每次運輸?shù)霓r產(chǎn)品中B產(chǎn)品有y件,根據(jù)表中的數(shù)量關系列出關于x和y的二元一次方程組,解之即可,(2)設增加m件A產(chǎn)品,則增加了(8-m)件B產(chǎn)品,設增加供貨量后得運費為W元,根據(jù)(1)的結果結合圖表列出W關于m的一次函數(shù),再根據(jù)“總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍”,列出關于m的一元一次不等式,求出m的取值范圍,再根據(jù)一次函數(shù)的增減性即可得到答案.【詳解】解:(1)設每次運輸?shù)霓r產(chǎn)品中A產(chǎn)品有x件,每次運輸?shù)霓r產(chǎn)品中B產(chǎn)品有y件,根據(jù)題意得:,解得:,答:每次運輸?shù)霓r產(chǎn)品中A產(chǎn)品有10件,每次運輸?shù)霓r產(chǎn)品中B產(chǎn)品有30件,(2)設增加m件A產(chǎn)品,則增加了(8-m)件B產(chǎn)品,設增加供貨量后得運費為W元,增加供貨量后A產(chǎn)品的數(shù)量為(10+m)件,B產(chǎn)品的數(shù)量為30+(8-m)=(38-m)件,根據(jù)題意得:W=30(10+m)+20(38-m)=10m+1060,由題意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函數(shù)W隨m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年健康瘦身計劃合同
- 2025年代理授權專賣協(xié)議書
- 2025年校園改造工程項目審計與評估合同2篇
- 二零二五年度食堂消防設施維護承包協(xié)議
- 基于二零二五年度微生物菌劑的創(chuàng)新應用項目合作合同3篇
- 2025年度科技園區(qū)物業(yè)租賃管理及創(chuàng)新孵化協(xié)議3篇
- 2025年物業(yè)服務與社區(qū)文化活動合作協(xié)議書5篇
- 2025年度馬鈴薯種薯產(chǎn)業(yè)扶貧與鄉(xiāng)村振興合作合同4篇
- 2025年度高新技術產(chǎn)業(yè)無償股權轉贈合同3篇
- 2025房地產(chǎn)買賣居間的合同
- 寒潮雨雪應急預案范文(2篇)
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標準(2024版)宣傳海報
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓計劃
- 南京工業(yè)大學浦江學院《線性代數(shù)(理工)》2022-2023學年第一學期期末試卷
- 2024版機床維護保養(yǎng)服務合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認定》
- 工程融資分紅合同范例
- 2024國家安全員資格考試題庫加解析答案
評論
0/150
提交評論