廣東陽江市陽春八甲中學2024屆中考數(shù)學猜題卷含解析_第1頁
廣東陽江市陽春八甲中學2024屆中考數(shù)學猜題卷含解析_第2頁
廣東陽江市陽春八甲中學2024屆中考數(shù)學猜題卷含解析_第3頁
廣東陽江市陽春八甲中學2024屆中考數(shù)學猜題卷含解析_第4頁
廣東陽江市陽春八甲中學2024屆中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣東陽江市陽春八甲中學2024屆中考數(shù)學猜題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在一次中學生田徑運動會上,參加跳遠的名運動員的成績?nèi)缦卤硭?成績(米)人數(shù)則這名運動員成績的中位數(shù)、眾數(shù)分別是()A. B. C., D.2.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值應是()A.110 B.158 C.168 D.1783.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.4.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a(chǎn)+a2=a35.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是()A.1 B.2 C.3 D.46.如圖,是的外接圓,已知,則的大小為A. B. C. D.7.如圖是一個由正方體和一個正四棱錐組成的立體圖形,它的主視圖是()A. B. C. D.8.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為A.40海里 B.60海里 C.70海里 D.80海里9.某數(shù)學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]10.把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有1個三角形,第②個圖案中有4個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為()A.15 B.17 C.19 D.2411.下列現(xiàn)象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉(zhuǎn)一扇門,門在空中運動的痕跡12.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優(yōu)秀、良好、合格、不合格四個等級,繪制了如圖所示統(tǒng)計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.14.函數(shù)中自變量x的取值范圍是_____;函數(shù)中自變量x的取值范圍是______.15.關于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.16.如圖,AE是正八邊形ABCDEFGH的一條對角線,則∠BAE=°.17.已知關于x的方程x2-23x-k=0有兩個相等的實數(shù)根,則k的值為__________.18.如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數(shù)y=的圖象上,則菱形的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.20.(6分)問題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點D為邊BC上的動點,連接AD以AD為直徑作⊙O交邊AB、AC分別于點E、F,接E、F,求EF的最小值;問題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長是否存在最小值,若存在,求最小值:若不存在,請說明理由.21.(6分)解不等式組:,并求出該不等式組所有整數(shù)解的和.22.(8分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.23.(8分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想圖1中,線段PM與PN的數(shù)量關系是,位置關系是;(2)探究證明把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.24.(10分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.25.(10分)如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、點B、點C均落在格點上.(I)計算△ABC的邊AC的長為_____.(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).26.(12分)已知關于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;(2)若方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實數(shù)m的值.27.(12分)如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)中位數(shù)、眾數(shù)的定義即可解決問題.【詳解】解:這些運動員成績的中位數(shù)、眾數(shù)分別是4.70,4.1.故選:D.【點睛】本題考查中位數(shù)、眾數(shù)的定義,解題的關鍵是記住中位數(shù)、眾數(shù)的定義,屬于中考基礎題.2、B【解析】根據(jù)排列規(guī)律,10下面的數(shù)是12,10右面的數(shù)是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.3、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.4、C【解析】分析:直接利用冪的乘方運算法則以及同底數(shù)冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數(shù)冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關運算法則是解題關鍵.5、D【解析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①∵拋物線對稱軸是y軸的右側(cè),∴ab<0,∵與y軸交于負半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.6、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.7、A【解析】

對一個物體,在正面進行正投影得到的由前向后觀察物體的視圖,叫做主視圖.【詳解】解:由主視圖的定義可知A選項中的圖形為該立體圖形的主視圖,故選擇A.【點睛】本題考查了三視圖的概念.8、D【解析】分析:依題意,知MN=40海里/小時×2小時=80海里,∵根據(jù)方向角的意義和平行的性質(zhì),∠M=70°,∠N=40°,∴根據(jù)三角形內(nèi)角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故選D.9、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象10、D【解析】

由圖可知:第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,第④個圖案有三角形1+3+4+4=12,…第n個圖案有三角形4(n﹣1)個(n>1時),由此得出規(guī)律解決問題.【詳解】解:解:∵第①個圖案有三角形1個,第②圖案有三角形1+3=4個,第③個圖案有三角形1+3+4=8個,…∴第n個圖案有三角形4(n﹣1)個(n>1時),則第⑦個圖中三角形的個數(shù)是4×(7﹣1)=24個,故選D.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)給定圖形中三角形的個數(shù),找出an=4(n﹣1)是解題的關鍵.11、B【解析】

本題是一道關于點、線、面、體的題目,回憶點、線、面、體的知識;【詳解】解:∵A、天空劃過一道流星說明“點動成線”,∴故本選項錯誤.∵B、汽車雨刷在擋風玻璃上刷出的痕跡說明“線動成面”,∴故本選項正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點動成線”,∴故本選項錯誤.∵D、旋轉(zhuǎn)一扇門,門在空中運動的痕跡說明“面動成體”,∴故本選項錯誤.故選B.【點睛】本題考查了點、線、面、體,準確認識生活實際中的現(xiàn)象是解題的關鍵.點動成線、線動成面、面動成體.12、C【解析】

先求出800米跑不合格的百分率,再根據(jù)用樣本估計總體求出估值.【詳解】400×人.故選C.【點睛】考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠ADB=∠C+∠DAC,再次根據(jù)等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內(nèi)角和等于180°列式計算即可得解.【詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.【點睛】本題考查了等腰三角形的性質(zhì),線段垂直平分線上的點到兩端點的距離相等的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),三角形的內(nèi)角和定理,熟記各性質(zhì)與定理是解題的關鍵.14、x≠2x≥3【解析】

根據(jù)分式的意義和二次根式的意義,分別求解.【詳解】解:根據(jù)分式的意義得2-x≠0,解得x≠2;根據(jù)二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【點睛】數(shù)自變量的范圍一般從幾個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).15、2.【解析】試題解析:由于關于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當k=2時,由于二次項系數(shù)k﹣2=2,方程不是關于x的二次方程,故k≠2.所以k的值是2.故答案為2.16、67.1【解析】試題分析:∵圖中是正八邊形,∴各內(nèi)角度數(shù)和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案為67.1.考點:多邊形的內(nèi)角17、-3【解析】試題解析:根據(jù)題意得:△=(23)2-4×1×(-k)=0,即12+4k=0,

解得:k=-3,18、1【解析】

連接AC交OB于D,由菱形的性質(zhì)可知.根據(jù)反比例函數(shù)中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.

四邊形OABC是菱形,

點A在反比例函數(shù)的圖象上,

的面積,

菱形OABC的面積=的面積=1.【點睛】本題考查的知識點是菱形的性質(zhì)及反比例函數(shù)的比例系數(shù)k的幾何意義.解題關鍵是反比例函數(shù)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)當四邊形BEDF是菱形時,四邊形AGBD是矩形;證明見解析;【解析】

(1)在證明全等時常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過角之間的關系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點、分別是、的中點,∴,.∴.在和中,,∴.解:當四邊形是菱形時,四邊形是矩形.證明:∵四邊形是平行四邊形,∴.∵,∴四邊形是平行四邊形.∵四邊形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四邊形是矩形.【點睛】本題主要考查了平行四邊形的基本性質(zhì)和矩形的判定及全等三角形的判定.平行四邊形基本性質(zhì):①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.三角形全等的判定條件:SSS,SAS,AAS,ASA.20、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問題;(2)如圖2中,作AH⊥BC于H.當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短;(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當直徑AD的值一定時,EF的值也確定,根據(jù)垂線段最短可知當AD與AH重合時,AD的值最短,此時EF的值也最短,如圖2﹣1中,當AD⊥BC時,作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點A順時針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長線于H,設BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時,AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當x=﹣=1時,EC的長最小,此時EC=18,∴AC=EC=9,∴AC的最小值為9.【點睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識,解題的關鍵是學會添加常用輔助線,學會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.21、1【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式組的解集為:﹣2<x≤3,所以所有整數(shù)解的和為:﹣1+0+1+2+3=1.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關鍵.22、(1)證明見解析(2)1【解析】

(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結(jié)合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經(jīng)過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點睛】本題考查了切線的性質(zhì)定理以及判定定理,以及直角三角形三角函數(shù)的應用,證明圓的切線的問題常用的思路是根據(jù)切線的判定定理轉(zhuǎn)化成證明垂直的問題.23、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.方法2、先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,即可.【詳解】解:(1)∵點P,N是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時,△PMN的面積最大,∴DE∥BC且DE在頂點A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時,△PMN面積最大,∴點D在BA的延長線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【點睛】本題考查旋轉(zhuǎn)中的三角形,關鍵在于對三角形的所有知識點熟練掌握.24、(1)證明見解析;(2)【解析】

(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進行計算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.25、作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論