湖北省孝感市文昌中學2022年中考聯(lián)考數(shù)學試卷含解析_第1頁
湖北省孝感市文昌中學2022年中考聯(lián)考數(shù)學試卷含解析_第2頁
湖北省孝感市文昌中學2022年中考聯(lián)考數(shù)學試卷含解析_第3頁
湖北省孝感市文昌中學2022年中考聯(lián)考數(shù)學試卷含解析_第4頁
湖北省孝感市文昌中學2022年中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省孝感市文昌中學2022年中考聯(lián)考數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.a2?a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=22.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.3.計算(﹣)﹣1的結果是()A.﹣ B. C.2 D.﹣24.(2011?雅安)點P關于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)5.在平面直角坐標系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.127.已知A樣本的數(shù)據(jù)如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數(shù) B.標準差 C.中位數(shù) D.眾數(shù)8.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.129.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)210.若,,則的值是()A.2 B.﹣2 C.4 D.﹣411.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.12.如圖,小剛從山腳A出發(fā),沿坡角為的山坡向上走了300米到達B點,則小剛上升了()A.米 B.米 C.米 D.米二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm14.分解因式:3x2-6x+3=__.15.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.16.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.17.被歷代數(shù)學家尊為“算經之首”的九章算術是中國古代算法的扛鼎之作九章算術中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕一雀一燕交而處,衡適平并燕、雀重一斤問燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕將一只雀、一只燕交換位置而放,重量相等只雀、6只燕重量為1斤問雀、燕毎只各重多少斤?”設每只雀重x斤,每只燕重y斤,可列方程組為______.18.如圖,△ABC的兩條高AD,BE相交于點F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.20.(6分)某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是

;在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為

度;將條形統(tǒng)計圖補充完整;如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?21.(6分)一名在校大學生利用“互聯(lián)網+”自主創(chuàng)業(yè),銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.求與之間的函數(shù)關系式,并寫出自變量的取值范圍;求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?22.(8分)已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.(1)求證:四邊形FBGH是菱形;(2)求證:四邊形ABCH是正方形.23.(8分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.24.(10分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數(shù)量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)25.(10分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.26.(12分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),拋物線的對稱軸直線x=交x軸于點D.(1)求拋物線的解析式;(2)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,交x軸于點G,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標;(3)在(2)的條件下,將線段FG繞點G順時針旋轉一個角α(0°<α<90°),在旋轉過程中,設線段FG與拋物線交于點N,在線段GB上是否存在點P,使得以P、N、G為頂點的三角形與△ABC相似?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.27.(12分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標為1.(1)寫出拋物線的函數(shù)表達式;(2)判斷△ABC的形狀,并證明你的結論;(3)平面內是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標,如果不存在,說說你的理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

直接利用合并同類項法則以及積的乘方運算法則、整式的除法運算法則分別計算得出答案.【詳解】A、a2?a3=a5,故此選項正確;B、2a+a2,無法計算,故此選項錯誤;C、(-a3)3=-a9,故此選項錯誤;D、a2÷a=a,故此選項錯誤;故選A.【點睛】此題主要考查了合并同類項以及積的乘方運算、整式的除法運算,正確掌握相關運算法則是解題關鍵.2、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A3、D【解析】

根據(jù)負整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù),可得答案.【詳解】解:,

故選D.【點睛】本題考查了負整數(shù)指數(shù)冪,負整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù).4、A【解析】∵關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù),∴點P的坐標為(3,﹣4).故選A.5、C【解析】:∵點的橫縱坐標均為負數(shù),∴點(-1,-2)所在的象限是第三象限,故選C6、B【解析】

設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數(shù)的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質和等腰直角三角形的性質.7、B【解析】試題分析:根據(jù)樣本A,B中數(shù)據(jù)之間的關系,結合眾數(shù),平均數(shù),中位數(shù)和標準差的定義即可得到結論:設樣本A中的數(shù)據(jù)為xi,則樣本B中的數(shù)據(jù)為yi=xi+2,則樣本數(shù)據(jù)B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.8、C【解析】

先根據(jù)勾股定理求出BC得長,再根據(jù)銳角三角函數(shù)正弦的定義解答即可.【詳解】如圖,根據(jù)勾股定理得,BC=AB∴sinA=BCAB故選C.【點睛】本題考查了銳角三角函數(shù)的定義及勾股定理,熟知銳角三角函數(shù)正弦的定義是解決問題的關鍵.9、A【解析】

根據(jù)“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關鍵.10、D【解析】因為,所以,因為,故選D.11、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.

∴在數(shù)軸上可表示為.故選B.“點睛”不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.12、A【解析】

利用銳角三角函數(shù)關系即可求出小剛上升了的高度.【詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【點睛】此題主要考查了解直角三角形的應用,根據(jù)題意構造直角三角形,正確選擇銳角三角函數(shù)得出AB,BO的關系是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、15【解析】如圖,等腰△ABC的內切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內切圓的半徑為r,則.14、3(x-1)2【解析】

先提取公因式3,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】.故答案是:3(x-1)2.【點睛】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.15、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.16、【解析】

連接,根據(jù)勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質、等腰直角三角形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.17、【解析】

設雀、燕每1只各重x斤、y斤,根據(jù)等量關系:今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤,列出方程組求解即可.【詳解】設雀、燕每1只各重x斤、y斤,根據(jù)題意,得整理,得故答案為【點睛】考查二元一次方程組得應用,解題的關鍵是分析題意,找出題中的等量關系.18、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析.【解析】

先證明△AFC為等腰三角形,根據(jù)等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據(jù)中位線的性質即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質.解決本題的關鍵是證明H點為FC的中點,然后利用中位線的性質解決問題.本題中要證明DH=BF,一般三角形中出現(xiàn)這種2倍或關系時,常用中位線的性質解決.20、(1)560;(2)54;(3)補圖見解析;(4)18000人【解析】

(1)本次調查的樣本容量為224÷40%=560(人);(2)“主動質疑”所在的扇形的圓心角的度數(shù)是:360°×84560=54o;(3)“講解題目”的人數(shù)是:560?84?168?224=84(人).(4)60000×=18000(人),

答:在課堂中能“獨立思考”的學生約有18000人.21、(1)(2),,144元【解析】

(1)利用待定系數(shù)法求解可得關于的函數(shù)解析式;(2)根據(jù)“總利潤每件的利潤銷售量”可得函數(shù)解析式,將其配方成頂點式,利用二次函數(shù)的性質進一步求解可得.【詳解】(1)設與的函數(shù)解析式為,將、代入,得:,解得:,所以與的函數(shù)解析式為;(2)根據(jù)題意知,,,當時,隨的增大而增大,,當時,取得最大值,最大值為144,答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及根據(jù)相等關系列出二次函數(shù)解析式及二次函數(shù)的性質.22、(1)見解析(2)見解析【解析】

(1)由三角形中位線知識可得DF∥BG,GH∥BF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;

(2)連結BH,交AC于點O,利用平行四邊形的對角線互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根據(jù)對角線互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.【詳解】(1)∵點F、G是邊AC的三等分點,

∴AF=FG=GC.

又∵點D是邊AB的中點,

∴DH∥BG.

同理:EH∥BF.

∴四邊形FBGH是平行四邊形,

連結BH,交AC于點O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四邊形FBGH是菱形;

(2)∵四邊形FBGH是平行四邊形,

∴BO=HO,F(xiàn)O=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四邊形ABCH是平行四邊形.

∵AC⊥BH,AB=BC,

∴四邊形ABCH是正方形.【點睛】本題考查正方形的判定,菱形的判定和性質,三角形的中位線,熟練掌握正方形的判定和性質是解題的關鍵.23、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理24、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】

(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉的性質,即可判斷出△ACD≌△BCE'即可得出結論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當α≠180°時,由旋轉的性質得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關系得,AP<AC+CP,∴當點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質,菱形的性質,平移和旋轉的性質,等邊三角形的判定和性質,勾股定理,解(1)的關鍵是四邊形MCND'是平行四邊形,解(2)的關鍵是判斷出點A,C,P三點共線時,AP最大.25、(1)見解析;(2)tan∠CED=【解析】

(1)欲證明,只要證明即可;(2)由,可得,設FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,由,可得BD?BE=BC?BA,設AC=BC=x,則有,由此求出AC、CD即可解決問題.【詳解】(1)證明:如下圖,連接AE,∵AD是直徑,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB,∵,,∴∠BDC=∠EAC,∵∠AEC=∠ADC,∴∠EAC=∠AEC,∴;(2)解:如下圖,連接OC,∵AO=OD,AC=CB,∴OC∥BD,∴,∴,設FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,∵∠BAD=∠BEC,∠B=∠B,∴,∴BD?BE=BC?BA,設AC=BC=x,則有,∴,∴,∴,∴.【點睛】本題屬于圓的綜合題,涉及到三角形的相似,解直角三角形等相關考點,熟練掌握三角形相似的判定及解直角三角形等相關內容是解決本題的關鍵.26、(1);(1),E(1,1);(3)存在,P點坐標可以為(1+,5)或(3,5).【解析】

(1)設B(x1,5),由已知條件得,進而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點坐標.(3)設N點為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點坐標.又由△ABC∽△GNP,且時,得n=3或n=﹣2(舍去).求得P點坐標.【詳解】解:(1)設B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點式得,S四邊形CDBF=﹣(m﹣1)1+.當m=1時,S四邊形CDBF最大,為.此時,E點坐標為(1,1).(3)存在.如圖1,由線段FG繞點G順時針旋轉一個角α(5°<α<95°),設N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當△ABC∽△GNP,且時,即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時P點坐標為(1+,5).當△ABC∽△GNP,且時,即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時P點坐標為(3,5).綜上所述,滿足題意的P點坐標可以為,(1+,5),(3,5).【點睛】本題考查求拋物線,三角形的性質和面積的求法,直角三角形的判定,以及三角形相似的性質,屬于較難題.27、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【解析】

(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠N

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論