版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省南京秦淮外國(guó)語(yǔ)學(xué)校2024年九年級(jí)中考數(shù)學(xué)模擬試
題
學(xué)校:姓名:班級(jí):考號(hào):
一、單選題
1.下列計(jì)算正確的是()
A.a2+a2=2a4B.a2?a=aiC.(3a)~=60rD.a6+a2—as
【答案】B
【分析】
根據(jù)合并同類項(xiàng),同底數(shù)幕的乘法,積的乘方,逐個(gè)進(jìn)行判斷即可.
【詳解】A、???4+/=2",故本選項(xiàng)不符合題意;
3
B,Va\a=a,故本選項(xiàng)符合題意;
C>V(3a)2=9a2,故本選項(xiàng)不符合題意;
D、:/、/不是同類項(xiàng),不能合并,故本選項(xiàng)不符合題意.
故選:B.
【點(diǎn)睛】本題考查了合并同類項(xiàng),同底數(shù)幕的運(yùn)算等,熟練掌握這些知識(shí)是解題的關(guān)鍵.
2.5G是第五代移動(dòng)通信技術(shù),5G網(wǎng)絡(luò)理論下載速度可以達(dá)到每秒1300000KB以上.用
科學(xué)記數(shù)法表示1300000是()
A.13xl05B.1.3xl05C.1.3xl06D.1.3xlO7
【答案】C
【分析】本題考查科學(xué)記數(shù)法表示.科學(xué)記數(shù)法的表示形式為ax10”的形式,其中
1<|a|<10,"為整數(shù).確定”的值時(shí),要看把原數(shù)變成。時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,
n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.
【詳解】解:,?,1300000=1.3x1()6,
故選:C.
3.如果一組數(shù)據(jù)2,3,x,4,3,6(x為非負(fù)整數(shù))的中位數(shù)為3,則x的值有幾
種可能().
A.2B.3C.4D.5
【答案】C
【分析】
本題考查了中位數(shù)的概念,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅?/p>
最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).根據(jù)中位數(shù)的概
念求出可能的值即可.
【詳解】解:將除X的數(shù)據(jù)從小到大排列為:2,3,3,4,6,這組數(shù)據(jù)的中位數(shù)為
3,
加入x后中位數(shù)為3,
x為非負(fù)整數(shù),
??.X的值可能為:。,1,2,3.
故選:C.
4.如圖,矩形ABCZ)的頂點(diǎn)A、B、C的坐標(biāo)分別為(0,6),(0,2),(1,2).將矩形ABCD向
右平移相個(gè)單位,若平移后的矩形ABCD與函數(shù)y=?(無(wú)>0)的圖像有公共點(diǎn),則機(jī)
的取值范圍是()
A.0<m<4B.l<m<6C.l<m<5D.2<m<6
【答案】B
【分析】先求出。(1,6),再根據(jù)平移方式求出平移后點(diǎn)2和點(diǎn)。的對(duì)應(yīng)點(diǎn)坐標(biāo)分別為
(帆2),(l+m,6),再求出反比例函數(shù)恰好經(jīng)過(guò)點(diǎn)(1+加,6)和點(diǎn)(相,2)時(shí)m的值即可得到
答案.
【詳解】解:???矩形ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(。,6),(0,2),(1,2),
ACD=AB=4,CD//AB,
???平移后點(diǎn)2和點(diǎn)D的對(duì)應(yīng)點(diǎn)坐標(biāo)分別為(利,2),(1+m,6),
1?
當(dāng)反比例函數(shù)恰好經(jīng)過(guò)點(diǎn)(1+m,6)時(shí),則6=--,
m+l
解得“2=1(已檢驗(yàn)是原方程的解);
1o
當(dāng)反比例函數(shù)恰好經(jīng)過(guò)點(diǎn)(相,2)時(shí),貝IJ2=二,
m
試卷第2頁(yè),共30頁(yè)
解得機(jī)=6(已檢驗(yàn)是原方程的解);
17
???若平移后的矩形ABCD與函數(shù)y=—(x>0)的圖像有公共點(diǎn),則m的取值范圍是
X
l<m<6,
故選:B.
【點(diǎn)睛】本題主要考查了反比例函數(shù)與幾何綜合,矩形的性質(zhì),坐標(biāo)與圖形變化平移等
等,根據(jù)題意求出反比例函數(shù)經(jīng)過(guò)平移后點(diǎn)D和點(diǎn)B對(duì)應(yīng)點(diǎn)時(shí)m的值是解題的關(guān)鍵.
5.小嘉說(shuō):將二次函數(shù)y=V的圖象平移或翻折后經(jīng)過(guò)點(diǎn)(2,0)有4種方法:
①向右平移2個(gè)單位長(zhǎng)度②向右平移1個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度
③向下平移4個(gè)單位長(zhǎng)度④沿?zé)o軸翻折,再向上平移4個(gè)單位長(zhǎng)度
你認(rèn)為小嘉說(shuō)的方法中正確的個(gè)數(shù)有()
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【分析】根據(jù)二次函數(shù)圖象的平移可依此進(jìn)行求解問(wèn)題.
【詳解】解:①將二次函數(shù)向右平移2個(gè)單位長(zhǎng)度得到:y=(x-2『,把點(diǎn)(2,0)代
入得:y=(2-2『=0,所以該平移方式符合題意;
②將二次函數(shù)y=V向右平移1個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度得到:
j=(x-l)2-l,把點(diǎn)(2,0)代入得:y=(2-l?-l=0,所以該平移方式符合題意;
③將二次函數(shù)y=/向下平移4個(gè)單位長(zhǎng)度得到:y=x2-4,把點(diǎn)(2,0)代入得:
>=2^4=0,所以該平移方式符合題意;
④將二次函數(shù)y=V沿x軸翻折,再向上平移4個(gè)單位長(zhǎng)度得到:y=-x2+4,把點(diǎn)(2,0)
代入得:>=-22+4=0,所以該平移方式符合題意;
綜上所述:正確的個(gè)數(shù)為4個(gè);
故選D.
【點(diǎn)睛】本題主要考查二次函數(shù)圖象的平移,熟練掌握二次函數(shù)圖象的平移是解題的關(guān)
鍵.
6.我們定義:兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形,根據(jù)定義:
①等邊三角形一定是奇異三角形;②在RdABC中,NC=90。,AB=c,AC=b,BC=
a,且6>a,若RdABC是奇異三角形,則a:b-.c=l:?2;③如圖,A8是。。的
直徑,C是。。上一點(diǎn)(不與點(diǎn)A、2重合),D是半圓的中點(diǎn),C、。在直徑A8
的兩側(cè),若在。。內(nèi)存在點(diǎn)E,使AE=A。,CB=CE.則AACE是奇異三角形;④在③
的條件下,當(dāng)AACE是直角三角形時(shí),ZAOC=120°,其中,說(shuō)法正確的有()
r
【答案】B
【分析】①設(shè)等邊三角形的邊長(zhǎng)為。,代入檢驗(yàn)即可;②在RtAABC中,由勾股定理可
得儲(chǔ)+匕2=。2,因?yàn)镽tAA5c是奇異三角形,且6>a,所以4+°2=2廿,然后可得
2
6=亞°,c=6a,代入可求;③要證明△ACE是奇異三角形,只需證AC'+CEZ=2AE
即可;④由③可得AACE是奇異三角形,所以4。2+庭2=24序,當(dāng)AACE是直角三角
形時(shí),由②可得AC:AE:CE=1:叵拒或AC:AE:CE=A/3:A/2:1,然后分兩種情況討
論.
【詳解】解:設(shè)等邊三角形的邊長(zhǎng)為a,
則片+片=2〃,滿足奇異三角形的定義,
二等邊三角形一定是奇異三角形,
故①正確;
在RtAABC中,a2+b2=c2,
*.*c>/?>a>0,
2c2X22+b292a2<b2+c2,
若.ABC是奇異三角形,一定有2〃="+,,
lb1="+(/+/),
?**b1=2Q2,得/?=y/2a.
,?*c2=b2+a2=33,
c=^3a,
a:b:c=1:V2:V3,
故②錯(cuò)誤;
在RtAABC中,儲(chǔ)+〃=。2,
試卷第4頁(yè),共30頁(yè)
是。。的直徑,
,ZACB=ZADB=9Q°,
在RfAACB中,AC2+BC2=AB2;
在咫AAD3中,AD2+BD2=AB2.
。是半圓的中點(diǎn),
AD=BD>
:.AD=BD,
AB2=AD1+BD2=2ADr,
又:CB=CE,AE^AD,
AC2+CE2=2AE2.
..?AACE是奇異三角形,
故③正確;
由③可得AACE是奇異三角形,
/.AC2+CE2=2AE2.
當(dāng)AACE是直角三角形時(shí),
由②可得AC:AE-.CE=I:叵6或AC:AE;CE=60:1,
(I)當(dāng)AC:AE:CE=1:0:有時(shí),
AC:CE=1:73,即AC:CB=1:73,
?/ZACB=90,
:.ZABC=3Q°,
:.ZAOC=2ZABC=60°.
(II)當(dāng)AC:AE:CE=""l時(shí),
AC:CE=73:1,即AC:CB=51,
:ZACB=90°,
:.ZABC=60°,
ZAOC=2ZABC=120°,
:.ZAOC的度數(shù)為60?;?20°,
故④錯(cuò)誤;
故選:B.
【點(diǎn)睛】本題主要考查了:L命題;2.勾股定理;3.圓周角定理及推論;4.直角三
角形的性質(zhì).能牢固掌握以上知識(shí)點(diǎn)并綜合運(yùn)用是做出本題的關(guān)鍵.
二、填空題
2
7.—在實(shí)數(shù)范圍內(nèi)有意義,則無(wú)的取值范圍是
2x-l
【答案】
【分析】根據(jù)分式分母不為0列出不等式,解不等式即可.
【詳解】解:由題意得,2/1知,
解得,洋1,
故答案為:
【點(diǎn)睛】本題考查的是分式有意義的條件,掌握分式分母不為0是解題的關(guān)鍵.
8.因式分解:ma2—6ma+9m—.
【答案】m(a-3)2
【分析】
本題考查提公因式法、公式法分解因式,掌握完全平方公式的結(jié)構(gòu)特征是正確應(yīng)用的前
提.先提取公因式加,再利用完全平方公式即可.
【詳解】
原式=—6a+9)
=m^a—Sy,
故答案為:加(。-3)
9.如圖,以邊長(zhǎng)為2的等邊ABC頂點(diǎn)A為圓心、一定的長(zhǎng)為半徑畫弧,恰好與8C邊
相切,分別交AB,AC于。,E,則圖中陰影部分的面積是.
試卷第6頁(yè),共30頁(yè)
【答案】V3-j
【分析】
作A尸」BC,由勾股定理求出",然后根據(jù)S陰影=SABC-S庸形ADE得出答案.
【詳解】解:由題意,以A為圓心、一定的長(zhǎng)為半徑畫弧,恰好與3C邊相切,
設(shè)切點(diǎn)為R連接則
等邊A6C中,AB=AC=BC=2,ABAC=60°,
:.CF=BF=1.
在RtACF中,AF=ylAB2-AF2=y/3,
60;rX()2
-''S^=SABC-ADE=~x2xV3-^=A/3--,
陰影A8c屈形ADE23602
故答案為:A/3-|
【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),求扇形面積,理解切線的性質(zhì),將陰影部
分的面積轉(zhuǎn)化為三角形的面積-扇形的面積是解題的關(guān)鍵.
10.在20世紀(jì)70年代,我國(guó)著名數(shù)學(xué)家華羅庚教授將黃金分割法作為一種“優(yōu)選法”,
在全國(guó)大規(guī)模推廣,取得了很大成果.如圖,利用黃金分割法,所做所將矩形窗框ABC。
分為上下兩部分,其中£為邊的黃金分割點(diǎn),^BE-=AE-AB.已知AB為2米,
則線段助的長(zhǎng)為米.
D
------------------1c
【答案】(6-1)/卜1+右)
【分析】根據(jù)點(diǎn)E是A8的黃金分割點(diǎn),可得絲=—=理二1,代入數(shù)值得出答案.
BEAB2
【詳解】???點(diǎn)E是A3的黃金分割點(diǎn),
.AEBEA/5-1
?.=__------.
BEAB2
:A8=2米,
3£=(指-1)米.
故答案為:(6-1).
【點(diǎn)睛】本題主要考查了黃金分割的應(yīng)用,掌握黃金比是解題的關(guān)鍵.
11.如圖,四邊形ABCD內(nèi)接于C。,對(duì)角線AC是。的直徑,ZACD=30°,連接對(duì)
角線BD,則/C3D的度數(shù)是.
【答案】60。/60度
【分析】
根據(jù)直徑所對(duì)的圓周角是直角得ZADC=90°,結(jié)合三角形內(nèi)角和定理求得ZCAD=60°,
最后依據(jù)同弧所對(duì)的圓周角相等可得結(jié)果.
【詳解】解:AC是:_O的直徑,
.-.ZADC=90°,
ZACD=30°,
ZC4D=60°,
:./CBD=NCAD=60°,
故答案為:60°.
【點(diǎn)睛】本題考查了直徑所對(duì)的圓周角是直角,三角形內(nèi)角和定理,以及同弧所對(duì)的圓
周角相等;解題的關(guān)鍵是熟練掌握相關(guān)知識(shí)點(diǎn).
試卷第8頁(yè),共30頁(yè)
12.如圖所示的網(wǎng)格是由相同的小正方形組成的網(wǎng)格,點(diǎn)A,B,P是網(wǎng)格線的交點(diǎn),
則ZB4B+NPBA=.
【答案】45°/45度
【分析】過(guò)點(diǎn)尸作尸D〃AB,延長(zhǎng)AP至點(diǎn)C,連接8c由平行線的性質(zhì)可證明出
ZPAB+ZPBA=ZBPC.再求出PC=BC=J?,PB=M,即可判定△BPC為等腰直
角三角形,即得出4PC=45。,即/PAB+NPBA=45。.
【詳解】如圖,過(guò)點(diǎn)P作尸D〃AB,延長(zhǎng)AP至點(diǎn)C,連接BC,
?/PD//AB,
:.ZPAB=ZCPD,ZPBA=ZBPD,
:.NPAB+NPBA=ZCPD+ZBPD=Z.BPC.
由圖可知尸C=8C=\產(chǎn)+22=也,PB=712+32=710,
PC2+BC2=PB2,
...△3PC為等腰直角三角形,
/.NBPC=45°,即NPAB+NPBA=45°.
故答案為:45°.
【點(diǎn)睛】本題考查平行線的性質(zhì),勾股定理和勾股定理逆定理,等腰直角三角形的判定
和性質(zhì).正確的作出輔助線是解題關(guān)鍵.
fX=1
13.已知{c是方程辦+勿=3的解,則代數(shù)式2a+4b-5的值為_(kāi)_.
[y=2
【答案】1
(x—1
【分析】把J2代入〃x+by=3可得〃+2b=3,而2i+4b-5=2(a+2Z?)-5,再整體代
入求值即可.
(——]
【詳解】解:把c代入ox+by=3可得:
[y=2
a+2b—3,
2a+4b-5
=2"+2/?)-5
=2?35=1.
故答案為:1
【點(diǎn)睛】本題考查的是二元一次方程的解,利用整體代入法求解代數(shù)式的值,掌握“方
程的解的含義及整體代入的方法”是解本題的關(guān)鍵.
14.若關(guān)于尤的方程x2+2kx+k2+k+3=0有兩個(gè)實(shí)數(shù)根,則上2+%+3的最小值為.
【答案】9
【分析】根據(jù)題意得到判別式△加,解不等式即可求出4的范圍,再求出嚴(yán)+k+3最小
值,即可.
【詳解】解:根據(jù)題意得,A=⑵¥-4(左2+左+3)=-4*12/0
左W-3
設(shè)墳=/+左+3,貝1|卬=1+「)+—,對(duì)稱軸為4-L
I2;42
■:k0-3
在對(duì)稱軸左側(cè)
當(dāng)左=一3時(shí),/小=[_3+;]+[=9,
故填:9.
【點(diǎn)睛】本題考查根的判別式,和二次函數(shù)求最小值,解題的關(guān)鍵是熟練運(yùn)用根的判別
式,本題屬于基礎(chǔ)題型.
15.如圖,點(diǎn)。在射線3c上移動(dòng)(不含8點(diǎn)),RtABCsRtADE,ZACB=90°,AB=10,
8c=8,若SAC0E=3.6時(shí),貝l|3£>=.
【分析】本題考查了相似三角形的判定和性質(zhì),解直角三角形,勾股定理,解題的關(guān)鍵
試卷第10頁(yè),共30頁(yè)
是找到BAD^C4E的條件.設(shè)BD=x,因?yàn)镽tABC^RtADE,所以可設(shè)
CF=3a,EF=4a,則CE=5a,結(jié)合j.A40sC4E,得到〃與工之間的關(guān)系,根據(jù)面
積列方程即可得到答案.
【詳解】解:VZACB=90°,AB=10,BC=8,
*'-AC7AB2-BC?=6,
VRtABC^RtADE,
,ABA(J
—,ZBAC=ADAE,
ADAE
ABAD
:.ZBAD=ZCAE,
ACAE
:.BAD^CAE,
:.ZABD=ZACE,
過(guò)點(diǎn)E作EFJ.BC于一點(diǎn)F,
A
B
:ZECF+ZACE=90°,ZABD+ZBAC=90°,
??ZECF=/BAC,
OA
\tanZECF=tanZBAC=—=—二一,
AC63
設(shè)皮>=無(wú),CF=3a,EF=4a,
??CE=yjCF2+EF2=5a^
:BAD^CAE,
.ABBD
~AC~~CE,
.10x
65a
3
?a=—x,
25
,S叢CDE=3.6,
X—x=3.6,
225
解得%=5,%=3,
/.=3或5,
故答案為:3或5.
16.如圖,菱形ABCO中,ZABC=60°,AB=4,點(diǎn)尸是直線AD上一動(dòng)點(diǎn),點(diǎn)E在
直線PB上,若ZBEC=NBCP,則CE的最小值是—.
【答案】遞
3
【分析】連接作.45石的外接圓CO,連接OB,OC,OA,利用相似三角
形的性質(zhì)判斷出NAEB=120。,得出點(diǎn)£的運(yùn)動(dòng)軌跡,可得結(jié)論.
【詳解】連接AE,作一石的外接圓?O,連接OE,OB,OC,OA,
???四邊形ABCD是菱形,
AB=BC,AD//CB,
:.ZBAD=18O0-ZABC=120°,
?;/BEC=ZBCP,/CBE=/PBC,
;.EBCsCBP,
.BCEB
??而一拓’
:.BC2=BEBP,
AB?=BEBP,
.ABEB
??而一瓦’
試卷第12頁(yè),共30頁(yè)
*.*ZABE=ZABP,
;?_ABEs.PBA,
:.ZAEB=ZBAP=120°,
在O任取一點(diǎn)尸,連接AT,BF,
???O是二ABE1的外接圓,
/.ZF+ZAEB=180°,
???點(diǎn)E在]。上運(yùn)動(dòng),ZAOB=120°f
:.ZOBA=ZOAB=30°,0A=08=逑,
3
???ZOBC=NOBA+ZABC=30°+60°=90°,
22
?,?由勾股定理得:OC=^OB+BC=4+42二蟲(chóng)I,
K3J3
?:EC+OENOC
?八口8A/34734g明”、4若
3333
的最小值為逑,
3
故答案為:生叵.
3
【點(diǎn)睛】此題考查了相似三角形的判定與性質(zhì),菱形的性質(zhì)以及面積法的運(yùn)用,解決問(wèn)
題的關(guān)鍵是利用相似三角形的對(duì)應(yīng)邊成比例得出當(dāng)點(diǎn)。,E,C三點(diǎn)共線時(shí),CE最短.
三、解答題
5x-l>3x-4
17.求不等式組12的解集,并寫出它的自然數(shù)解.
——X<—X
133
【答案】-1.5<x<l,自然數(shù)解為0,1
【分析】
本題主要考查的是解一元一次不等式組,先求出每個(gè)不等式的解集,再根據(jù)口訣:同大
取大,同小取小,大小小大中間找,大大小小無(wú)解了,確定不等式組的解集,再寫出它
的自然數(shù)解.
5x—1>3x—4(J)
【詳解】解:124
——x<——Mg)
I33
由①式得x>—1.5,
由②式得xWl,
不等式組的解集為-L5<xVl.
它的自然數(shù)解為0,1
C3'r2-4x+4
18.先化簡(jiǎn),后求值:上x(chóng)-1———,然后在0,1,2三個(gè)數(shù)中選一個(gè)適合
\x-lJx-1
的數(shù),代入求值.
X+2
【答案】-當(dāng)x=0時(shí),原式=1
x-2
【分析】
先計(jì)算括號(hào)里面進(jìn)行通分運(yùn)算,再進(jìn)而利用分式的混合運(yùn)算法則計(jì)算得出答案.
【詳解】
x-Px2一4%+4
解:原式二
尤―1,x~l
2
-4-—--x--X----X-—--1-
)(x-2)7
(尤+2)(x-2)x-1
x-1
x+2
x—2
由題意知%W1且xw2,
x=0,
當(dāng)%=0時(shí),原式=一詈1=1.
【點(diǎn)睛】
本題主要考查了分式的化簡(jiǎn)求值,解答本題的關(guān)鍵是明確分式化簡(jiǎn)求值的方法以及分式
有意義的條件.
19.在科學(xué)實(shí)驗(yàn)復(fù)習(xí)備考中,王老師為本班學(xué)生準(zhǔn)備了下面3個(gè)實(shí)驗(yàn)項(xiàng)目:A.測(cè)量物
質(zhì)的密度:B.實(shí)驗(yàn)室制取二氧化碳:C探究凸透鏡成像.并準(zhǔn)備了如圖的三等分轉(zhuǎn)盤,
規(guī)定每名學(xué)生可轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,并完成轉(zhuǎn)盤停止后指針?biāo)赶虻膶?shí)驗(yàn)項(xiàng)目(若指針停在
等分線上,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤).根據(jù)數(shù)學(xué)知識(shí)回答下列問(wèn)題:
⑴請(qǐng)直接寫出:小明同學(xué)轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,正好選中自己熟悉的“A”實(shí)驗(yàn)的概率是
(2)請(qǐng)你求出小明和小紅兩名同學(xué)各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,都沒(méi)有選中"C'實(shí)驗(yàn)的概率(用樹(shù)狀
圖或列表法求解).
試卷第14頁(yè),共30頁(yè)
【答案】⑴g
4
(2)列表見(jiàn)解析,都沒(méi)有選中“。'實(shí)驗(yàn)的概率為
【分析】
(1)根據(jù)概率計(jì)算公式求解即可;
(2)先列出表格找到所有的等可能性的結(jié)果數(shù),再找到都沒(méi)有選中“。'實(shí)驗(yàn)的結(jié)果數(shù),
最后依據(jù)概率計(jì)算公式求解即可.
【詳解】(1)解:;一共有A、2、C三個(gè)項(xiàng)目,每個(gè)項(xiàng)目被選中的概率相同,
小明同學(xué)轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤,正好選中自己熟悉的“A”實(shí)驗(yàn)的概率是:,
故答案為:-
(2)解:列表如下:
ABC
A(A,A)(B,A)(C,A)
B(A,B)QB,B)(C,B)
C(A,C)(B,C)(C,C)
由表格可知一共有9種等可能性的結(jié)果數(shù),其中都沒(méi)有選中“。'實(shí)驗(yàn)的結(jié)果數(shù)有4種,
4
都沒(méi)有選中實(shí)驗(yàn)的概率為§.
【點(diǎn)睛】本題主要考查了簡(jiǎn)單的概率計(jì)算,樹(shù)狀圖法或列表法求解概率,熟知概率的相
關(guān)知識(shí)是解題的關(guān)鍵.
20.隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇某校計(jì)
劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽(tīng)課、在線答題和在線討論為了
解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了“你對(duì)哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查
(不可多選,也不可不選),并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖
中信息,解答下列問(wèn)題:
A人數(shù)
48
42
36
30
24
18
12
6
0在線在線在線在線技
閱讀聽(tīng)課答題討論
(1)直接寫出本次調(diào)查的學(xué)生總?cè)藬?shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求扇形統(tǒng)計(jì)圖中“在線討論”對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)該校共有學(xué)生3000人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生有多少人?
【答案】⑴90
(2)見(jiàn)解析
(3)48°
(4)800人
【分析】(1)利用在線答題的學(xué)生人數(shù)除以其所占百分比即得出總?cè)藬?shù);
(2)用總?cè)藬?shù)減去其它在線學(xué)習(xí)方式人數(shù)即得出在線聽(tīng)課學(xué)生人數(shù),即可補(bǔ)全統(tǒng)計(jì)圖;
(3)求出在線討論學(xué)生所占的百分比,再乘以360。即得出答案;
(4)求出在線閱讀學(xué)生所占的百分比,再乘以該???cè)藬?shù)即可.
【詳解】(1)本次調(diào)查的學(xué)生總?cè)藬?shù):18+20%=90,
故答案為:90;
(2)在線聽(tīng)課的學(xué)生有:90-24-18-12=36(人),
補(bǔ)全的條形統(tǒng)計(jì)圖如下圖所示;
試卷第16頁(yè),共30頁(yè)
(3)扇形統(tǒng)計(jì)圖中“在線討論”對(duì)應(yīng)的扇形圓心角是:360°x^=48°,
即扇形統(tǒng)計(jì)圖中“在線討論”對(duì)應(yīng)的扇形圓心角是48。;
24
(4)3000X—=800(人),
90
答:該校對(duì)在線閱讀最感興趣的學(xué)生有800人.
【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖相關(guān)聯(lián),由樣本估計(jì)總體.根據(jù)題意,從統(tǒng)
計(jì)圖中找到必要的信息和數(shù)據(jù)是解題關(guān)鍵.
21.如圖,在矩形ABCD中,對(duì)角線相交于點(diǎn)。,且NCOE=/3OC、ZDCF=ZACD.
⑴求證:DF=CF;
(2)若NCDF=60。,DF=6,求矩形ABCD的面積.
【答案】(1)見(jiàn)解析
⑵36g
【分析】(1)先證明△OC尸名AOCO得到。尸=OO,CF=CO,再由矩形的性質(zhì)證明OC=OD,
即可證明DF=CF=OC=OD;
(2)由全等三角形的性質(zhì)得到/CDO=/CDF=60。,OD=DF=6,即可證明是等
邊三角形,得到8=0。=6,然后解直角三角形求出8C的長(zhǎng)即可得到答案.
【詳解】(1)解:在和小。。。中,
ZDCF=ZDCO
<CD=CD,
ZCDF=ZCDO
:ADCFmADCO(ASA),
:.DF=DO,CF=CO,
:四邊形ABC。是矩形,
/.OC^OD=-AC^-BD,
22
:.DF=CF=OC=OD;
(2)解::ADCF名ADCO,
:.ZCDO=ZCDF=60°,OD=DF=6,
又,:OD=OC,
...△OCD是等邊三角形,
:.CD=OD=6,
:四邊形ABC。是矩形,
ZBCD=90°,
:.BC=CD-tanZBDC=6V3,
?1?S^ABCD=BC-CD=36百.
【點(diǎn)睛】本題主要考查了矩形的性質(zhì),解直角三角形,等邊三角形的性質(zhì)與判定,全等
三角形的性質(zhì)與判定,熟練掌握矩形的性質(zhì)是解題的關(guān)鍵.
22.圖①是一輛登高云梯消防車的實(shí)物圖,圖②是其工作示意圖,起重臂AC是可伸縮
的(10mWACV20m),且起重臂AC可繞點(diǎn)A在一定范圍內(nèi)轉(zhuǎn)動(dòng),張角為
ZC4£(90°<ZCAE<150°),轉(zhuǎn)動(dòng)點(diǎn)A距離地面8。的高度AE為4m.
①②
(1)當(dāng)起重臂AC長(zhǎng)度為12m,張角/C4E為:120。時(shí),求云梯消防車最高點(diǎn)C距離地面的
高度CF;
(2)某日、一居民家突發(fā)險(xiǎn)情,該居民家距離地面的高度為22m,請(qǐng)問(wèn)該消防車能否實(shí)
施有效救援?(參考數(shù)據(jù):72-1.414,73-1.732)
【答案】(1)10m
(2)無(wú)法實(shí)施有效救援.
【分析】
(1)根據(jù)矩形的性質(zhì)知道邊相等,再利用直角三角形的正弦值得到CP;
(2)根據(jù)矩形的性質(zhì)知道邊相等,再利用直角三角形的正弦值得到CB,進(jìn)而得到該消
防車能否可以實(shí)施有效救援.
【詳解】(1)解:如圖,作AGLCF于點(diǎn)G,
試卷第18頁(yè),共30頁(yè)
ZAEF=ZEFG=ZFGA=90°,
???四邊形AEFG為矩形,
AFG=AE=4m,NE4G=90。,
???ZGAC=ZEAC-ZEAG=120°-90°=30°,
在RfACG中,sin/C4G=—
AC
???CG=AC.sinZCAG=12xsin30°=12x1=6(m),
???CF=CG+GF=6+4=10(m);
(2)解:如圖,作AGLC齊于點(diǎn)G,
,/ZAEF=ZEFG=ZFGA=90°,
???四邊形AEFG為矩形,
/.FG=AE=4mfNE4G=90。,
,//C4E的最大角度為150。,
???ZGAC=ZEAC-ZEAG=150°-90°=60°,
?/AC=20m,
???在心ACG中,sinZCAG=——
AC
:.CG=ACsinNC4G=20xsin6(T=20x2^=10^~17.32(m),
???CF=CG+GF=17.32+4=21.32(m);
最高救援高度為21.32m,
,該居民家距離地面的高度為22m,
22m>21.32m,
故該消防車無(wú)法實(shí)施有效救援.
【點(diǎn)睛】本題考查了矩形的性質(zhì),解直角三角形,掌握正弦的定義是解題的關(guān)鍵.
23.如圖,矩形ABC。中,AD>AB,
(如需畫草圖,請(qǐng)使用備用圖)
DD
BC
(備用圖)
(1)請(qǐng)用無(wú)刻度的直尺和圓規(guī)按下列要求作圖:(不寫作法,保留作圖痕跡)
①在8c邊上取一點(diǎn)E,使AE=BC;
②在CD上作一點(diǎn)F,使點(diǎn)尸到點(diǎn)D和點(diǎn)E的距離相等.
⑵在(1)中,若A8=6,AD=10,貝!]ZkAEF的面積=_.
【答案】(1)①見(jiàn)解析;②見(jiàn)解析;
【分析】(1)①以A為圓心,8C的長(zhǎng)為半徑畫弧與8c交于點(diǎn)E;
②連接DE,作DE的垂直平分線與0c交于點(diǎn)F;
(2)根據(jù)矩形的性質(zhì),^AE=AD,利J用SSSvE^AEF^^ADF,^ZAEF=ZADF=9Q°,
利用勾股定理得BE=8,再得EC=2,利用勾股定理求出進(jìn)而得出面積.
【詳解】(1)解:①如圖所示
點(diǎn)E即為所求
②如圖所示
點(diǎn)廠即為所求
(2)解:連接ERAF
在矩形ABCD中
試卷第20頁(yè),共30頁(yè)
AD=BC=10
又AE=BC
:.AE=AD=10
又DF=EF
:.AAEF^AADF(SSS)
/.ZAEF=ZADF=90°
在RtAABE中
BE=yjAE2-AB2=>/102-62=8
:.EC=BC-BE=2
令DF=FE=x,則FC=6-x
在RtAFCE中
FE2=FC2+EC2
.■.x2=(6—x)2+22
解得x=T
AAEF的面積為5X7x10=1^
故答案為:
【點(diǎn)睛】本題考查了等線段的截取,垂直平分線的畫法及性質(zhì),全等三角形的判定和性
質(zhì)以及矩形的性質(zhì),利用勾股定理求邊長(zhǎng)等知識(shí)點(diǎn),熟練地掌握基本作圖是解決問(wèn)題的
關(guān)鍵.
24.南京有著“天下文樞”“江南第一州”等美譽(yù).美麗環(huán)境來(lái)之不易為了美化環(huán)境,我市
加大了對(duì)綠化的投資,2021年用于綠化投資100萬(wàn)元,截止到2023年,這三年的綠化
總投資為331萬(wàn)元,求我市2022、2023這兩年綠化投資的年平均增長(zhǎng)率.
【答案】10%
【分析】
本題考查一元二次方程的應(yīng)用,理解題意,正確列出方程是解答的關(guān)鍵.
設(shè)這兩年綠化投資的年平均增長(zhǎng)率為X,根據(jù)三年的綠化總投資錢數(shù)列方程求解即可.
【詳解】解:設(shè)我市2022、2023這兩年綠化投資的年平均增長(zhǎng)率為X,則2022年用于
綠化投資100(1+%)萬(wàn)元,2023年用于綠化投資100(1+療萬(wàn)元,
依題意得:100+100(l+x)+100(l+x)2=331,
整理得:100%2+300X-31=0.
解得:再=0.1=10%,X2=-3.1(不合題意,舍去).
答:我市2022、2023這兩年綠化投資的年平均增長(zhǎng)率為10%.
25.如圖,AB為。。的直徑,C為BA延長(zhǎng)線上一點(diǎn),C。與。O相切于點(diǎn)。.
【答案】(1)見(jiàn)解析;
(2)1A/6
【分析】(1)連接。。,根據(jù)切線的性質(zhì),得出OD_LCD,即NADO+NS4=90。,
根據(jù)直徑所對(duì)的圓周角等于90。,得出ZADO+ZBDO=90。,根據(jù)OB=OD,得出
ZB=ZBDO,即可得出=即可證明△C4Ds^CD8;
(2)設(shè)圓的半徑為廣,根據(jù)sinC=;,表示出C。,用r即可表示出AC、BC、利用
即可得出的長(zhǎng),再利用勾股定理求出A8的長(zhǎng),即可求出圓的半徑.
【詳解】(1)證明:連接0,
與。。相切于點(diǎn)。,
:.OD±CD,
:.ZCDO=90°,
:.ZADO+ZCDA=90°,
AB為。。的直徑,
:.ZADB^9Q0,
試卷第22頁(yè),共30頁(yè)
:.ZADO+ABDO=90°,
:.ZCDA=ZBDO,
OB=OD,
:"B=/BDO,
:.NB=NCDA,
NC=NC,
:ACADsACDB.
(2)設(shè)圓的半徑為八
,C0=3r,
/.AC=CO—AO=3r—r=2r,
CB=CO+BO=3r+r=Ar,
ACAD^ACDB,
.ADCDAC
,BD~BC~CD9
;.CD~=ACBC=2r-4r=?,r2,
:6=府=2。,
AD2萬(wàn)
---=-----,
64r
【點(diǎn)睛】本題主要考查了切線的性質(zhì)、三角形相似的判定和性質(zhì)、勾股定理、解直角三
角形,準(zhǔn)確作出輔助線是解題的關(guān)鍵.
26.定義:在平面直角坐標(biāo)系中,有一條直線工=機(jī),對(duì)于任意一個(gè)函數(shù),作該函數(shù)自
變量大于加的部分關(guān)于直線x=機(jī)的軸對(duì)稱圖形,與原函數(shù)中自變量大于或等于加的部
分共同構(gòu)成一個(gè)新的函數(shù)圖象,則這個(gè)新函數(shù)叫做原函數(shù)關(guān)于直線x的"鏡面函數(shù)
”.例如:圖①是函數(shù)y=x+i的圖象,則它關(guān)于直線X=o的“鏡面函數(shù)”的圖象如圖②
所示,且它的“鏡面函數(shù)”的解析式為黑),也可以寫成尸N+1.
⑴在圖③中畫出函數(shù)y=2x+l關(guān)于直線x=i的“鏡面函數(shù)”的圖象.
(2)函數(shù)y=+2》+5關(guān)于直線x=-l的“鏡面函數(shù)”與直線丫=彳+%有三個(gè)公共點(diǎn),求
m的值.
(3)已知4-1,0),B(3,0),C(3,-2),0(-1,-2),函數(shù)y=尤?-2〃x+2(">0)關(guān)于
直線x=0的“鏡面函數(shù)”圖象與矩形ABCD的邊恰好有4個(gè)交點(diǎn),求〃的取值范圍.
【答案】(1)圖象見(jiàn)解析
⑵加的值為3或亍21
313
(3)”的取值范圍為二<"<2或
26
【分析】
(1)根據(jù)“鏡面函數(shù)”的定義畫出函數(shù)y=2x+1的“鏡面函數(shù)”的圖象即可;
(2)分直線y=x+7找過(guò)“鏡面函數(shù),,圖象與直線x=_l的交點(diǎn)和與原拋物線相切兩種情況
求解即可;
(3)先求出y=f—2辦+2伍>。)關(guān)于x=o的“鏡面函數(shù)”解析式,再分x=T以及頂點(diǎn)
在產(chǎn)-2上的情況和尤=3時(shí),列出不等式求解即可.
【詳解】⑴解:如圖③,即為函數(shù)函數(shù)y=2無(wú)+1關(guān)于直線x=l的“鏡面函數(shù)”的圖象,
試卷第24頁(yè),共30頁(yè)
(2)對(duì)于y=-x2+2x+5,當(dāng)x=0時(shí),y=5,
二函數(shù)y=-d+2x+5與y軸的交點(diǎn)坐標(biāo)為(0,5),
當(dāng)x=-l時(shí),j=-(-l)2+2x(-l)+5=2,即函數(shù)y=-x?+2x+5與尸一1的交點(diǎn)為(T,
2),
當(dāng)直線y=x+機(jī)經(jīng)過(guò)點(diǎn)(T,2)時(shí),m=3,
根據(jù)對(duì)稱性,此時(shí),函數(shù)y=-/+2x+5關(guān)于直線x=-l的“鏡面函數(shù)”與直線y=x+有
三個(gè)公共點(diǎn);
當(dāng)直線y=x+〃z與原拋物線只有一個(gè)交點(diǎn)時(shí),也有三個(gè)公共點(diǎn),
,,X-\-YYl——X2+2x+5,
整理得,X2—x+2+m-5=0,
止匕時(shí),A=(-l)2-4x(m-5)=0,
21
解得,m=;,
4
y=0時(shí),A=(-1)2-4X(;77-5)>0,
71
綜上,加的值為3或?;
4
(3)解:函數(shù)y=f—2依+2(心0)關(guān)于1=0的“鏡面函數(shù)”解析式為
X2-2nx+2(〃>0,x<0)
y=〈c,
x+2nx+2(n>0,x>0)
當(dāng)了二—1時(shí),y<0,
1—2fl+2<0,
3
解得,n>~;
2
cR-4n2
當(dāng)y=x-2依+2(〃>0)的頂點(diǎn)在8上時(shí),------=-2
4
解得〃=2或〃=-2(舍),
此時(shí),函數(shù)y=f—2砒+2(〃>0)關(guān)于直線x=0的“鏡面函數(shù)”圖象與矩形ABCD的邊有
5個(gè)交點(diǎn),不合題意,
3_
—v〃<2,
2
當(dāng)%=3時(shí),yv—2,
/.9—6M+2v—2,
13
解得,;
6
綜上,〃的取值范圍為23〈幾<2或〃>y13.
試卷第26頁(yè),共30頁(yè)
【點(diǎn)睛】本題考查一次函數(shù)、二次函數(shù)的綜合應(yīng)用;理解并運(yùn)用新定義“鏡面函數(shù)”,能
夠?qū)D象的對(duì)稱轉(zhuǎn)化為點(diǎn)的對(duì)稱,數(shù)形結(jié)合是解題的關(guān)鍵.
27.(1)【操作發(fā)現(xiàn)】
CG1
如圖1,在矩形ABC。和矩形CEG尸中,一=-,AB=9,AD=12,小明將矩形CEG尸
AG2
繞點(diǎn)C順時(shí)針轉(zhuǎn)一定的角度,如圖2所示.
①問(wèn):器4G的值是否變化?若不變,求A黑G的值;若變化,請(qǐng)說(shuō)明理由.
BEBE
②在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)2、E、尸在同一條直線上時(shí),求AG的長(zhǎng)度.
(2)【類比探究】
如圖3,在ABC中,AB=AC=2,45,ZBAC=a°,tanZABC=1,G為BC中點(diǎn),
點(diǎn)。為平面內(nèi)一動(dòng)點(diǎn),且£>G=如,將線段班>繞點(diǎn)。逆時(shí)針旋轉(zhuǎn)得到DE,則四
5
邊形54CE面積的最大值為.
(圖1)(圖2)(圖3)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 異常處理流程培訓(xùn)
- 工作計(jì)劃和建議
- 車商部工作計(jì)劃
- 2025標(biāo)準(zhǔn)土地流轉(zhuǎn)合同
- 審美活動(dòng)經(jīng)驗(yàn)
- 2025關(guān)于汽車抵押借款的合同范本
- 2025關(guān)于車輛買賣的合同范本
- 教育創(chuàng)新中導(dǎo)師與研究生互動(dòng)的新模式
- 娛樂(lè)行業(yè)銷售人員工作總結(jié)
- 2023年河南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 2024年安徽省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 山西省太原市重點(diǎn)中學(xué)2025屆物理高一第一學(xué)期期末統(tǒng)考試題含解析
- 充電樁項(xiàng)目運(yùn)營(yíng)方案
- 2024年農(nóng)民職業(yè)農(nóng)業(yè)素質(zhì)技能考試題庫(kù)(附含答案)
- 高考對(duì)聯(lián)題(對(duì)聯(lián)知識(shí)、高考真題及答案、對(duì)應(yīng)練習(xí)題)
- 新版《鐵道概論》考試復(fù)習(xí)試題庫(kù)(含答案)
- 【律師承辦案件費(fèi)用清單】(計(jì)時(shí)收費(fèi))模板
- 高中物理競(jìng)賽真題分類匯編 4 光學(xué) (學(xué)生版+解析版50題)
- Unit1FestivalsandCelebrations詞匯清單高中英語(yǔ)人教版
- 2024年上海市中考語(yǔ)文試題卷(含答案)
評(píng)論
0/150
提交評(píng)論